Suppr超能文献

基于DBSCAN聚类算法的实时超像素分割

Real-Time Superpixel Segmentation by DBSCAN Clustering Algorithm.

出版信息

IEEE Trans Image Process. 2016 Dec;25(12):5933-5942. doi: 10.1109/TIP.2016.2616302. Epub 2016 Oct 11.

Abstract

In this paper, we propose a real-time image superpixel segmentation method with 50 frames/s by using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. In order to decrease the computational costs of superpixel algorithms, we adopt a fast two-step framework. In the first clustering stage, the DBSCAN algorithm with color-similarity and geometric restrictions is used to rapidly cluster the pixels, and then, small clusters are merged into superpixels by their neighborhood through a distance measurement defined by color and spatial features in the second merging stage. A robust and simple distance function is defined for obtaining better superpixels in these two steps. The experimental results demonstrate that our real-time superpixel algorithm (50 frames/s) by the DBSCAN clustering outperforms the state-of-the-art superpixel segmentation methods in terms of both accuracy and efficiency.

摘要

在本文中,我们提出了一种基于带噪声的密度空间聚类(DBSCAN)算法的实时图像超像素分割方法,其帧率可达50帧/秒。为了降低超像素算法的计算成本,我们采用了一种快速的两步框架。在第一个聚类阶段,使用具有颜色相似性和几何约束的DBSCAN算法对像素进行快速聚类,然后在第二个合并阶段,通过由颜色和空间特征定义的距离测量,将小的聚类通过其邻域合并成超像素。在这两个步骤中定义了一个鲁棒且简单的距离函数以获得更好的超像素。实验结果表明,我们基于DBSCAN聚类的实时超像素算法(50帧/秒)在准确性和效率方面均优于当前最先进的超像素分割方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验