Suppr超能文献

利用光学传感器实现分布式卫星系统的可信自主运行。

Trusted Autonomous Operations of Distributed Satellite Systems Using Optical Sensors.

机构信息

Sir Lawrence Wackett Defence & Aerospace Centre, RMIT University, Melbourne, VIC 3000, Australia.

School of Aerospace Engineering, Sapienza University of Rome, 00138 Rome, Italy.

出版信息

Sensors (Basel). 2023 Mar 22;23(6):3344. doi: 10.3390/s23063344.

Abstract

Recent developments in Distributed Satellite Systems (DSS) have undoubtedly increased mission value due to the ability to reconfigure the spacecraft cluster/formation and incrementally add new or update older satellites in the formation. These features provide inherent benefits, such as increased mission effectiveness, multi-mission capabilities, design flexibility, and so on. Trusted Autonomous Satellite Operation (TASO) are possible owing to the predictive and reactive integrity features offered by Artificial Intelligence (AI), including both on-board satellites and in the ground control segments. To effectively monitor and manage time-critical events such as disaster relief missions, the DSS must be able to reconfigure autonomously. To achieve TASO, the DSS should have reconfiguration capability within the architecture and spacecraft should communicate with each other through an Inter-Satellite Link (ISL). Recent advances in AI, sensing, and computing technologies have resulted in the development of new promising concepts for the safe and efficient operation of the DSS. The combination of these technologies enables trusted autonomy in intelligent DSS (iDSS) operations, allowing for a more responsive and resilient approach to Space Mission Management (SMM) in terms of data collection and processing, especially when using state-of-the-art optical sensors. This research looks into the potential applications of iDSS by proposing a constellation of satellites in Low Earth Orbit (LEO) for near-real-time wildfire management. For spacecraft to continuously monitor Areas of Interest (AOI) in a dynamically changing environment, satellite missions must have extensive coverage, revisit intervals, and reconfiguration capability that iDSS can offer. Our recent work demonstrated the feasibility of AI-based data processing using state-of-the-art on-board astrionics hardware accelerators. Based on these initial results, AI-based software has been successively developed for wildfire detection on-board iDSS satellites. To demonstrate the applicability of the proposed iDSS architecture, simulation case studies are performed considering different geographic locations.

摘要

分布式卫星系统 (DSS) 的最新发展无疑提高了任务价值,因为它能够重新配置航天器集群/编队,并逐步在编队中添加新卫星或更新旧卫星。这些功能提供了固有优势,例如提高任务效率、多任务能力、设计灵活性等。由于人工智能 (AI) 提供的预测和反应完整性功能,包括星载卫星和地面控制段,因此可以实现可信的自主卫星操作 (TASO)。为了有效监测和管理救灾任务等时间关键事件,DSS 必须能够自主重新配置。为了实现 TASO,DSS 应该在架构内具有重新配置能力,并且航天器应该通过星间链路 (ISL) 相互通信。人工智能、传感和计算技术的最新进展导致了用于 DSS 安全高效运行的新有前途概念的发展。这些技术的结合使智能 DSS (iDSS) 操作具有可信的自主性,从而在数据收集和处理方面实现了对空间任务管理 (SMM) 的更具响应性和弹性的方法,特别是在使用最先进的光学传感器时。本研究通过提出低地球轨道 (LEO) 中的卫星星座来研究 iDSS 的潜在应用,用于近实时野火管理。为了使航天器能够在动态变化的环境中连续监测感兴趣区域 (AOI),卫星任务必须具有广泛的覆盖范围、回访间隔和 iDSS 可以提供的重新配置能力。我们最近的工作证明了使用最先进的机载 astrionics 硬件加速器进行基于 AI 的数据处理的可行性。基于这些初步结果,已成功为 iDSS 卫星上的野火检测开发了基于 AI 的软件。为了证明所提出的 iDSS 架构的适用性,考虑了不同地理位置进行了模拟案例研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d91/10052948/33c78420a010/sensors-23-03344-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验