Suppr超能文献

在轨演示可重训练的用于处理光学图像的机器学习有效载荷。

In-orbit demonstration of a re-trainable machine learning payload for processing optical imagery.

机构信息

Trillium Technologies Ltd., 27-29 South Lambeth Road, London, SW8 1SZ, UK.

Image Processing Laboratory, University of Valencia, Valencia, Spain.

出版信息

Sci Rep. 2023 Jun 27;13(1):10391. doi: 10.1038/s41598-023-34436-w.

Abstract

Cognitive cloud computing in space (3CS) describes a new frontier of space innovation powered by Artificial Intelligence, enabling an explosion of new applications in observing our planet and enabling deep space exploration. In this framework, machine learning (ML) payloads-isolated software capable of extracting high level information from onboard sensors-are key to accomplish this vision. In this work we demonstrate, in a satellite deployed in orbit, a ML payload called 'WorldFloods' that is able to send compressed flood maps from sensed images. In particular, we perform a set of experiments to: (1) compare different segmentation models on different processing variables critical for onboard deployment, (2) show that we can produce, onboard, vectorised polygons delineating the detected flood water from a full Sentinel-2 tile, (3) retrain the model with few images of the onboard sensor downlinked to Earth and (4) demonstrate that this new model can be uplinked to the satellite and run on new images acquired by its camera. Overall our work demonstrates that ML-based models deployed in orbit can be updated if new information is available, paving the way for agile integration of onboard and onground processing and "on the fly" continuous learning.

摘要

空间认知云计算(3CS)描述了一个由人工智能驱动的太空创新新前沿,使观测我们星球的新应用呈爆炸式增长,并使深空探索成为可能。在这个框架中,机器学习(ML)有效载荷——能够从机载传感器中提取高级信息的独立软件——是实现这一愿景的关键。在这项工作中,我们在一颗部署在轨道上的卫星上展示了一个名为“WorldFloods”的 ML 有效载荷,它能够从感测图像发送压缩的洪水图。具体来说,我们进行了一系列实验:(1)在对机载部署至关重要的不同处理变量上比较不同的分割模型,(2)表明我们可以在船上生成矢量多边形,从全 Sentinel-2 瓦片中勾勒出检测到的洪水区域,(3)用下传到地球的机载传感器的几张图像重新训练模型,以及(4)证明这个新模型可以上载到卫星上,并在其相机获取的新图像上运行。总的来说,我们的工作表明,部署在轨道上的基于机器学习的模型如果有新的信息可用,可以进行更新,为机载和地面处理的敏捷集成以及“实时”持续学习铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1025/10299994/7854e26097df/41598_2023_34436_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验