Suppr超能文献

多光谱短波近红外荧光成像与机器学习增强术中肿瘤边界勾画。

Enhancing intraoperative tumor delineation with multispectral short-wave infrared fluorescence imaging and machine learning.

机构信息

University College London, Wellcome, EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom.

UCL Great Ormond Street Institute of Child Health, Cancer Section, Developmental Biology and Cancer Programme, London, United Kingdom.

出版信息

J Biomed Opt. 2023 Sep;28(9):094804. doi: 10.1117/1.JBO.28.9.094804. Epub 2023 Mar 27.

Abstract

SIGNIFICANCE

Fluorescence-guided surgery (FGS) provides specific real-time visualization of tumors, but intensity-based measurement of fluorescence is prone to errors. Multispectral imaging (MSI) in the short-wave infrared (SWIR) has the potential to improve tumor delineation by enabling machine-learning classification of pixels based on their spectral characteristics.

AIM

Determine whether MSI can be applied to FGS and combined with machine learning to provide a robust method for tumor visualization.

APPROACH

A multispectral SWIR fluorescence imaging device capable of collecting data from six spectral filters was constructed and deployed on neuroblastoma (NB) subcutaneous xenografts ( ) after the injection of a NB-specific NIR-I fluorescent probe (Dinutuximab-IRDye800). We constructed image cubes representing fluorescence collected from to 1450 nm and compared the performance of seven learning-based methods for pixel-by-pixel classification, including linear discriminant analysis, -nearest neighbor classification, and a neural network.

RESULTS

The spectra of tumor and non-tumor tissue were subtly different and conserved between individuals. In classification, a combine principal component analysis and -nearest-neighbor approach with area under curve normalization performed best, achieving 97.5% per-pixel classification accuracy (97.1%, 93.5%, and 99.2% for tumor, non-tumor tissue and background, respectively).

CONCLUSIONS

The development of dozens of new imaging agents provides a timely opportunity for multispectral SWIR imaging to revolutionize next-generation FGS.

摘要

意义

荧光引导手术(FGS)提供了肿瘤的特定实时可视化,但基于荧光强度的测量容易出现误差。短波长红外(SWIR)的多光谱成像(MSI)有可能通过基于像素的光谱特征进行机器学习分类来改善肿瘤描绘。

目的

确定 MSI 是否可应用于 FGS 并与机器学习相结合,提供一种用于肿瘤可视化的强大方法。

方法

构建了一个能够从六个光谱滤波器收集数据的多光谱 SWIR 荧光成像设备,并在注射 NB 特异性近红外 I 荧光探针(Dinutuximab-IRDye800)后将其部署在神经母细胞瘤(NB)皮下异种移植物()上。我们构建了表示从 1050nm 到 1450nm 收集的荧光的图像立方体,并比较了七种基于学习的逐像素分类方法的性能,包括线性判别分析、k-最近邻分类和神经网络。

结果

肿瘤和非肿瘤组织的光谱略有不同,且在个体之间保持一致。在分类中,组合主成分分析和 k-最近邻方法与曲线下面积归一化的方法表现最好,实现了 97.5%的逐像素分类准确率(肿瘤、非肿瘤组织和背景的准确率分别为 97.1%、93.5%和 99.2%)。

结论

数十种新成像剂的开发为多光谱 SWIR 成像技术彻底改变下一代 FGS 提供了一个及时的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b2/10042297/be7904052dbb/JBO-028-094804-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验