Zhang Yida, Petukhov Viktor, Biederstedt Evan, Que Richard, Zhang Kun, Kharchenko Peter V
Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
Department of Neurobiology, Duke University, Durham, NC, USA.
bioRxiv. 2023 Mar 24:2023.02.03.527053. doi: 10.1101/2023.02.03.527053.
Targeted spatial transcriptomics hold particular promise in analysis of complex tissues. Most such methods, however, measure only a limited panel of transcripts, which need to be selected in advance to inform on the cell types or processes being studied. A limitation of existing gene selection methods is that they rely on scRNA-seq data, ignoring platform effects between technologies. Here we describe gpsFISH, a computational method to perform gene selection through optimizing detection of known cell types. By modeling and adjusting for platform effects, gpsFISH outperforms other methods. Furthermore, gpsFISH can incorporate cell type hierarchies and custom gene preferences to accommodate diverse design requirements.
靶向空间转录组学在复杂组织分析中具有独特的前景。然而,大多数此类方法仅测量有限的一组转录本,这些转录本需要预先选择,以便了解所研究的细胞类型或过程。现有基因选择方法的一个局限性在于它们依赖于单细胞RNA测序(scRNA-seq)数据,而忽略了不同技术之间的平台效应。在此,我们描述了gpsFISH,这是一种通过优化已知细胞类型的检测来进行基因选择的计算方法。通过对平台效应进行建模和调整,gpsFISH优于其他方法。此外,gpsFISH可以纳入细胞类型层次结构和定制基因偏好,以满足多样化的设计要求。