Comiter Charles, Chen Xingjian, Vaishnav Eeshit Dhaval, Kobayashi-Kirschvink Koseki J, Ciampricotti Metamia, Zhang Ke, Murray Jason, Monticolo Francesco, Qi Jianhuan, Tanaka Ryota, Brodowska Sonia E, Li Bo, Yang Yiming, Rodig Scott J, Karatza Angeliki, Villalonga Alvaro Quintanal, Turner Madison, Pfaff Kathleen L, Jané-Valbuena Judit, Slyper Michal, Waldman Julia, Vigneau Sebastian, Wu Jingyi, Blosser Timothy R, Segerstolpe Åsa, Abravanel Daniel L, Wagle Nikhil, Demehri Shadmehr, Zhuang Xiaowei, Rudin Charles M, Klughammer Johanna, Rozenblatt-Rosen Orit, Stultz Collin M, Shu Jian, Regev Aviv
bioRxiv. 2025 Jun 13:2023.03.21.533680. doi: 10.1101/2023.03.21.533680.
Tissue biology involves an intricate balance between cell-intrinsic processes and interactions between cells organized in specific spatial patterns, which can be respectively captured by single cell profiling methods, such as single cell RNA-seq (scRNA-seq) and spatial transcriptomics, and histology imaging data, such as Hematoxylin-and-Eosin (H&E) stains. While single cell profiles provide rich molecular information, they can be challenging to collect routinely in the clinic and either lack spatial resolution or high gene throughput. Conversely, histological H&E assays have been a cornerstone of tissue pathology for decades, but do not directly report on molecular details, although the observed structure they capture arises from molecules and cells. Here, we leverage vision transformers and adversarial deep learning to develop the Single Cell omics from Histology Analysis Framework (SCHAF), which generates a tissue sample's spatially-resolved whole transcriptome single cell omics dataset from its H&E histology image. We demonstrate SCHAF on a variety of tissues- including lung cancer, metastatic breast cancer, placentae, and whole mouse pups-training with matched samples analyzed by sc/snRNA-seq, H&E staining, and, when available, spatial transcriptomics. SCHAF generated appropriate single cell profiles from histology images in test data, related them spatially, and compared well to ground-truth scRNA-Seq, expert pathologist annotations, or direct spatial transcriptomic measurements, with some limitations. SCHAF opens the way to next-generation H&E analyses and an integrated understanding of cell and tissue biology in health and disease.
组织生物学涉及细胞内在过程与以特定空间模式组织的细胞间相互作用之间的复杂平衡,这可以分别通过单细胞分析方法(如单细胞RNA测序(scRNA-seq)和空间转录组学)以及组织学成像数据(如苏木精-伊红(H&E)染色)来捕捉。虽然单细胞图谱提供了丰富的分子信息,但在临床中常规收集可能具有挑战性,并且要么缺乏空间分辨率,要么基因通量不高。相反,组织学H&E检测几十年来一直是组织病理学的基石,但虽然它们所捕捉到的观察到的结构源于分子和细胞,但并不直接报告分子细节。在这里,我们利用视觉变换器和对抗深度学习来开发组织学分析框架单细胞组学(SCHAF),该框架从H&E组织学图像生成组织样本的空间分辨全转录组单细胞组学数据集。我们在包括肺癌、转移性乳腺癌、胎盘和全小鼠幼崽在内的多种组织上展示了SCHAF,使用通过sc/snRNA-seq、H&E染色以及(如有)空间转录组学分析的匹配样本进行训练。SCHAF从测试数据中的组织学图像生成了合适的单细胞图谱,在空间上关联了它们,并且与真实的scRNA-Seq、专家病理学家注释或直接的空间转录组测量结果相比表现良好,但也存在一些局限性。SCHAF为下一代H&E分析以及对健康和疾病中细胞与组织生物学的综合理解开辟了道路。