Suppr超能文献

双流体动力学和微米级薄边界层塑造了早期胚胎中的细胞质流动。

Two-fluid dynamics and micron-thin boundary layers shape cytoplasmic flows in early embryos.

作者信息

López Claudio Hernández, Puliafito Alberto, Xu Yitong, Lu Ziqi, Di Talia Stefano, Vergassola Massimo

机构信息

École Normale Supérieure, 75005 Paris, France.

Department of Oncology, University of Turin, 10060 Candiolo, Italy.

出版信息

bioRxiv. 2023 Mar 20:2023.03.16.532979. doi: 10.1101/2023.03.16.532979.

Abstract

Cytoplasmic flows are widely emerging as key functional players in development. In early embryos, flows drive the spreading of nuclei across the embryo. Here, we combine hydrodynamic modeling with quantitative imaging to develop a two-fluid model that features an active actomyosin gel and a passive viscous cytosol. Gel contractility is controlled by the cell cycle oscillator, the two fluids being coupled by friction. In addition to recapitulating experimental flow patterns, our model explains observations that remained elusive, and makes a series of new predictions. First, the model captures the vorticity of cytosolic flows, which highlights deviations from Stokes' flow that were observed experimentally but remained unexplained. Second, the model reveals strong differences in the gel and cytosol motion. In particular, a micron-sized boundary layer is predicted close to the cortex, where the gel slides tangentially whilst the cytosolic flow cannot slip. Third, the model unveils a mechanism that stabilizes the spreading of nuclei with respect to perturbations of their initial positions. This self-correcting mechanism is argued to be functionally important for proper nuclear spreading. Fourth, we use our model to analyze the effects of flows on the transport of the morphogen Bicoid, and the establishment of its gradients. Finally, the model predicts that the flow strength should be reduced if the shape of the domain is more round, which is experimentally confirmed in mutants. Thus, our two-fluid model explains flows and nuclear positioning in early , while making predictions that suggest novel future experiments.

摘要

细胞质流动正广泛成为发育过程中的关键功能参与者。在早期胚胎中,流动驱动细胞核在胚胎内扩散。在这里,我们将流体动力学建模与定量成像相结合,开发了一个双流体模型,该模型的特点是有一个活跃的肌动球蛋白凝胶和一个被动的粘性细胞质溶胶。凝胶收缩性由细胞周期振荡器控制,两种流体通过摩擦力耦合。除了重现实验流动模式外,我们的模型还解释了一些难以捉摸的观察结果,并做出了一系列新的预测。首先,该模型捕捉到了细胞质流动的涡度,这突出了与实验观察到但仍无法解释的斯托克斯流的偏差。其次,该模型揭示了凝胶和细胞质运动的巨大差异。特别是,预测在靠近皮质处有一个微米级的边界层,在那里凝胶沿切线滑动,而细胞质流动不能滑动。第三,该模型揭示了一种机制,该机制相对于细胞核初始位置的扰动稳定了细胞核的扩散。这种自我纠正机制被认为对正确的核扩散在功能上很重要。第四,我们用我们的模型分析了流动对形态发生素Bicoid运输及其梯度建立的影响。最后,该模型预测,如果区域形状更圆,流动强度应该降低,这在突变体中得到了实验证实。因此,我们的双流体模型解释了早期胚胎中的流动和核定位,同时做出了一些预测,为未来的新实验提供了方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/993a/10055070/d3e35d3fb349/nihpp-2023.03.16.532979v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验