Suppr超能文献

与糖原贮积病相关的葡萄糖-6-磷酸酶催化亚基1活性位点突变的催化抑制分子机制。

Molecular mechanisms of catalytic inhibition for active site mutations in glucose-6-phosphatase catalytic subunit 1 linked to glycogen storage disease.

作者信息

Sinclair Matt, Stein Richard A, Sheehan Jonathan H, Hawes Emily M, O'Brien Richard M, Tajkhorshid Emad, Claxton Derek P

出版信息

bioRxiv. 2023 Aug 17:2023.03.13.532485. doi: 10.1101/2023.03.13.532485.

Abstract

Mediating the terminal reaction of gluconeogenesis and glycogenolysis, the integral membrane protein G6PC1 regulates hepatic glucose production by catalyzing hydrolysis of glucose-6-phosphate (G6P) within the lumen of the endoplasmic reticulum. Consistent with its vital contribution to glucose homeostasis, inactivating mutations in G6PC1 cause glycogen storage disease (GSD) type 1a characterized by hepatomegaly and severe hypoglycemia. Despite its physiological importance, the structural basis of G6P binding to G6PC1 and the molecular disruptions induced by missense mutations within the active site that give rise to GSD type 1a are unknown. Exploiting a computational model of G6PC1 derived from the groundbreaking structure prediction algorithm AlphaFold2 (AF2), we combine molecular dynamics (MD) simulations and computational predictions of thermodynamic stability with a robust screening platform to define the atomic interactions governing G6P binding as well as explore the energetic perturbations imposed by disease-linked variants. We identify a collection of side chains, including conserved residues from the signature phosphatidic acid phosphatase motif, that contribute to a hydrogen bonding and van der Waals network stabilizing G6P in the active site. Introduction of GSD type 1a mutations into the G6PC1 sequence elicits changes in G6P binding energy, thermostability and structural properties, suggesting multiple pathways of catalytic impairment. Our results, which corroborate the high quality of the AF2 model as a guide for experimental design and to interpret outcomes, not only confirm active site structural organization but also suggest novel mechanistic contributions of catalytic and non-catalytic side chains.

摘要

整合膜蛋白G6PC1介导糖异生和糖原分解的终末反应,通过催化内质网腔中葡萄糖-6-磷酸(G6P)的水解来调节肝脏葡萄糖生成。鉴于其对葡萄糖稳态的重要贡献,G6PC1的失活突变会导致1a型糖原贮积病(GSD),其特征为肝肿大和严重低血糖。尽管其具有生理重要性,但G6P与G6PC1结合的结构基础以及活性位点内错义突变导致1a型GSD所引起的分子破坏尚不清楚。利用从开创性的结构预测算法AlphaFold2(AF2)获得的G6PC1计算模型,我们将分子动力学(MD)模拟和热力学稳定性的计算预测与强大的筛选平台相结合,以确定控制G6P结合的原子相互作用,并探索疾病相关变体所施加的能量扰动。我们鉴定出一组侧链,包括来自标志性磷脂酸磷酸酶基序的保守残基,它们有助于形成氢键和范德华网络,从而在活性位点稳定G6P。将1a型GSD突变引入G6PC1序列会引起G6P结合能、热稳定性和结构性质的变化,提示催化受损的多种途径。我们的结果证实了AF2模型作为实验设计指南和解释结果的高质量,不仅确认了活性位点的结构组织,还提示了催化和非催化侧链的新机制贡献。

相似文献

6
The molecular basis of type 1 glycogen storage diseases.1型糖原贮积病的分子基础。
Curr Mol Med. 2001 Mar;1(1):25-44. doi: 10.2174/1566524013364112.
10
The SLC37 family of sugar-phosphate/phosphate exchangers.糖磷酸/磷酸交换体的SLC37家族。
Curr Top Membr. 2014;73:357-82. doi: 10.1016/B978-0-12-800223-0.00010-4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验