Suppr超能文献

通过晶格应力工程在 Ba(ZrTi)O 无铅铁电陶瓷中实现显著增强的电卡效应。

Substantially Enhanced Electrocaloric Effect in Ba(ZrTi)O Lead-Free Ferroelectric Ceramics via Lattice Stress Engineering.

机构信息

School of Integrated Circuits, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.

China Zhenhua Group Yunke Electronics Co., Ltd., Guiyang 550018, China.

出版信息

ACS Appl Mater Interfaces. 2023 Apr 12;15(14):18065-18073. doi: 10.1021/acsami.3c00444. Epub 2023 Mar 30.

Abstract

As an alternative to conventional vapor-compression refrigeration, cooling devices based on electrocaloric (EC) materials are environmentally friendly and highly efficient, which are promising in realizing solid-state cooling. Lead-free ferroelectric ceramics with competitive EC performance are urgently desirable for EC cooling devices. In the past few decades, constructing phase coexistence and high polarizability have been two crucial factors in optimizing the EC performance. Different from the external stress generated through heavy equipment and inner interface stress caused by complex interface structures, the internal lattice stress induced by ion substitution engineering is a relatively simple and efficient means to tune the phase structure and polarizability. In this work, we introduce low-radius Li into BaZrTiO (BZT) to form a particular A-site substituted cell structure, leading to a change of the internal lattice stress. With the increase of lattice stress, the fraction of the rhombohedral phase in the rhombohedral-cubic (R-C) coexisting system and ferroelectricity are all pronouncedly enhanced for the LiCO-doped sample, resulting in the significant enhancement of saturated polarization () as well as EC performance [e.g., adiabatic temperature change (Δ) and isothermal entropy change (Δ)]. Under the same conditions (i.e., 333 K and 70 kV cm), the Δ of 5.7 mol % LiCO-doped BZT is 1.37 K, which is larger than that of the pure BZT ceramics (0.61 K). Consequently, in cooperation with the great improvement of electric field breakdown strength () from 70 to 150 kV cm, 5.7 mol % LiCO-doped BZT achieved a large Δ of 2.26 K at a temperature of 333 K, which is a competitive performance in the field of electrocaloric effect (ECE). This work provides a simple but effective approach to designing high-performance electrocaloric materials for next-generation refrigeration.

摘要

作为传统蒸气压缩制冷的替代方案,基于电卡(EC)材料的冷却装置具有环保和高效的特点,在实现固态冷却方面具有广阔的前景。对于 EC 冷却装置,具有竞争力的 EC 性能的无铅铁电陶瓷是急需的。在过去的几十年中,构建相共存和高极化率一直是优化 EC 性能的两个关键因素。与通过重型设备产生的外部应力和复杂界面结构引起的内部界面应力不同,离子取代工程引起的内部晶格应力是一种相对简单且高效的调节相结构和极化率的手段。在这项工作中,我们将低半径的 Li 引入 BaZrTiO(BZT)中,形成特殊的 A 位取代的单元结构,导致内部晶格应力发生变化。随着晶格应力的增加,LiCO 掺杂样品的菱方-立方(R-C)共存系统中的菱方相分数和铁电性都得到了显著增强,导致饱和极化强度()和 EC 性能(例如绝热温度变化(Δ)和等温熵变化(Δ))都得到了显著增强。在相同条件下(即 333 K 和 70 kV cm),5.7 mol%LiCO 掺杂 BZT 的Δ为 1.37 K,大于纯 BZT 陶瓷的 0.61 K。因此,在电击穿强度()从 70 kV cm 提高到 150 kV cm 的同时,5.7 mol%LiCO 掺杂 BZT 在 333 K 温度下实现了 2.26 K 的大Δ,这在电卡效应(ECE)领域具有竞争力的性能。这项工作为设计下一代制冷用高性能电卡材料提供了一种简单而有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验