Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland.
VIB & UGent Center for Medical Biotechnology, Universiteit Gent, 9052 Ghent, Belgium.
Neuron. 2023 Jun 7;111(11):1760-1775.e8. doi: 10.1016/j.neuron.2023.03.008. Epub 2023 Mar 29.
The proteome of glutamatergic synapses is diverse across the mammalian brain and involved in neurodevelopmental disorders (NDDs). Among those is fragile X syndrome (FXS), an NDD caused by the absence of the functional RNA-binding protein FMRP. Here, we demonstrate how the brain region-specific composition of postsynaptic density (PSD) contributes to FXS. In the striatum, the FXS mouse model shows an altered association of the PSD with the actin cytoskeleton, reflecting immature dendritic spine morphology and reduced synaptic actin dynamics. Enhancing actin turnover with constitutively active RAC1 ameliorates these deficits. At the behavioral level, the FXS model displays striatal-driven inflexibility, a typical feature of FXS individuals, which is rescued by exogenous RAC1. Striatal ablation of Fmr1 is sufficient to recapitulate behavioral impairments observed in the FXS model. These results indicate that dysregulation of synaptic actin dynamics in the striatum, a region largely unexplored in FXS, contributes to the manifestation of FXS behavioral phenotypes.
谷氨酸能突触的蛋白质组在哺乳动物大脑中具有多样性,并且与神经发育障碍 (NDD) 有关。其中包括脆性 X 综合征 (FXS),这是一种由功能性 RNA 结合蛋白 FMRP 缺失引起的 NDD。在这里,我们展示了突触后密度 (PSD) 的大脑区域特异性组成如何导致 FXS。在纹状体中,FXS 小鼠模型显示 PSD 与肌动蛋白细胞骨架的异常关联,反映出不成熟的树突棘形态和减少的突触肌动蛋白动力学。用组成性激活的 RAC1 增强肌动蛋白周转率可改善这些缺陷。在行为水平上,FXS 模型表现出纹状体驱动的不灵活性,这是 FXS 个体的典型特征,而外源性 RAC1 可挽救这种不灵活性。纹状体中 Fmr1 的缺失足以重现 FXS 模型中观察到的行为损伤。这些结果表明,纹状体中突触肌动蛋白动力学的失调,这是 FXS 中一个很大程度上尚未被探索的区域,导致了 FXS 行为表型的表现。