Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
J Mol Cell Cardiol. 2023 Jun;179:2-6. doi: 10.1016/j.yjmcc.2023.03.013. Epub 2023 Mar 29.
Direct reprogramming of resident cardiac fibroblasts to induced cardiomyocytes is an attractive therapeutic strategy to restore function and remuscularize the injured heart. The cardiac transcription factors Gata4, Mef2c, and Tbx5 have been the mainstay of direct cardiac reprogramming strategies for the past decade. Yet, recent discoveries have identified alternative epigenetic factors capable of reprogramming human cells in the absence of these canonical factors. Further, single-cell genomics evaluating cellular maturation and epigenetics in the setting of injury and heart failure models following reprogramming have continued to inform the mechanistic underpinnings of this process and point toward future areas of discovery for the field. These discoveries and others covered in this review have provided complementary approaches that further enhance the effectiveness of reprogramming as a means of promoting cardiac regeneration following myocardial infarction and heart failure.
将心脏成纤维细胞直接重编程为诱导心肌细胞是一种很有吸引力的治疗策略,可以恢复功能并使受损的心脏重新肌肉化。在过去的十年中,心脏转录因子 Gata4、Mef2c 和 Tbx5 一直是直接心脏重编程策略的基础。然而,最近的发现已经确定了其他能够在没有这些典型因子的情况下重新编程人类细胞的表观遗传因子。此外,单细胞基因组学评估了在损伤和心力衰竭模型中重编程后的细胞成熟和表观遗传学,这些研究不断为该过程的机制基础提供信息,并为该领域的未来发现指明方向。这些发现和本综述中涵盖的其他发现提供了补充方法,进一步提高了重编程作为促进心肌梗死后和心力衰竭后心脏再生的一种手段的有效性。