Suppr超能文献

局灶性癫痫网络中兴奋性的分布和异质性可能有助于癫痫发作的传播。

The distribution and heterogeneity of excitability in focal epileptic network potentially contribute to the seizure propagation.

作者信息

Fan Denggui, Wu Hongyu, Luan Guoming, Wang Qingyun

机构信息

School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China.

Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China.

出版信息

Front Psychiatry. 2023 Mar 14;14:1137704. doi: 10.3389/fpsyt.2023.1137704. eCollection 2023.

Abstract

INTRODUCTION

Existing dynamical models can explain the transmigration mechanisms involved in seizures but are limited to a single modality. Combining models with networks can reproduce scaled epileptic dynamics. And the structure and coupling interactions of the network, as well as the heterogeneity of both the node and network activities, may influence the final state of the network model.

METHODS

We built a fully connected network with focal nodes prominently interacting and established a timescale separated epileptic network model. The factors affecting epileptic network seizure were explored by varying the connectivity patterns of focal network nodes and modulating the distribution of network excitability.

RESULTS

The whole brain network topology as the brain activity foundation affects the consistent delayed clustering seizure propagation. In addition, the network size and distribution heterogeneity of the focal excitatory nodes can influence seizure frequency. With the increasing of the network size and averaged excitability level of focal network, the seizure period decreases. In contrast, the larger heterogeneity of excitability for focal network nodes can lower the functional activity level (average degree) of focal network. There are also subtle effects of focal network topologies (connection patterns of excitatory nodes) that cannot be ignored along with non-focal nodes.

DISCUSSION

Unraveling the role of excitatory factors in seizure onset and propagation can be used to understand the dynamic mechanisms and neuromodulation of epilepsy, with profound implications for the treatment of epilepsy and even for the understanding of the brain.

摘要

引言

现有的动力学模型可以解释癫痫发作中涉及的迁移机制,但仅限于单一模式。将模型与网络相结合可以重现规模化的癫痫动力学。并且网络的结构和耦合相互作用,以及节点和网络活动的异质性,可能会影响网络模型的最终状态。

方法

我们构建了一个具有显著相互作用的焦点节点的全连接网络,并建立了一个时间尺度分离的癫痫网络模型。通过改变焦点网络节点的连接模式和调节网络兴奋性分布来探索影响癫痫网络发作的因素。

结果

作为大脑活动基础的全脑网络拓扑结构影响一致的延迟聚类癫痫发作传播。此外,焦点兴奋性节点的网络大小和分布异质性会影响癫痫发作频率。随着网络大小和焦点网络平均兴奋性水平的增加,癫痫发作周期缩短。相反,焦点网络节点兴奋性的较大异质性会降低焦点网络的功能活动水平(平均度)。焦点网络拓扑结构(兴奋性节点的连接模式)以及非焦点节点也存在不可忽视的微妙影响。

讨论

揭示兴奋性因素在癫痫发作起始和传播中的作用可用于理解癫痫的动态机制和神经调节,对癫痫治疗乃至大脑的理解具有深远意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7775/10043226/2d90dc584da2/fpsyt-14-1137704-g001.jpg

相似文献

1
The distribution and heterogeneity of excitability in focal epileptic network potentially contribute to the seizure propagation.
Front Psychiatry. 2023 Mar 14;14:1137704. doi: 10.3389/fpsyt.2023.1137704. eCollection 2023.
2
Brain network dynamics codify heterogeneity in seizure evolution.
Brain Commun. 2022 Sep 16;4(5):fcac234. doi: 10.1093/braincomms/fcac234. eCollection 2022.
3
The Role of Excitability and Network Structure in the Emergence of Focal and Generalized Seizures.
Front Neurol. 2020 Feb 11;11:74. doi: 10.3389/fneur.2020.00074. eCollection 2020.
5
Time-variant Epileptic Brain Functional Connectivity of Focal and Generalized Seizure in Chronic Temporal Lobe Epilepsy Rat.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2833-2836. doi: 10.1109/EMBC44109.2020.9175924.
6
Dynamical Mechanisms of Interictal Resting-State Functional Connectivity in Epilepsy.
J Neurosci. 2020 Jul 15;40(29):5572-5588. doi: 10.1523/JNEUROSCI.0905-19.2020. Epub 2020 Jun 8.
7
Critical dynamics in the spread of focal epileptic seizures: Network connectivity, neural excitability and phase transitions.
PLoS One. 2022 Aug 23;17(8):e0272902. doi: 10.1371/journal.pone.0272902. eCollection 2022.
8
The seizure classification of focal epilepsy based on the network motif analysis.
Brain Res Bull. 2024 Feb;207:110879. doi: 10.1016/j.brainresbull.2024.110879. Epub 2024 Jan 17.
10
Spatiotemporal evolution of epileptic seizure based on mutual information and dynamic brain network.
BMC Med Inform Decis Mak. 2021 Jul 30;21(Suppl 2):80. doi: 10.1186/s12911-021-01439-4.

引用本文的文献

本文引用的文献

1
Prediction and control of focal seizure spread: Random walk with restart on heterogeneous brain networks.
Phys Rev E. 2022 Jun;105(6-1):064412. doi: 10.1103/PhysRevE.105.064412.
2
Gut microbiome effects on neuronal excitability & activity: Implications for epilepsy.
Neurobiol Dis. 2022 Apr;165:105629. doi: 10.1016/j.nbd.2022.105629. Epub 2022 Jan 13.
3
Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis.
Front Neurol. 2020 Nov 26;11:591690. doi: 10.3389/fneur.2020.591690. eCollection 2020.
4
Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review.
IEEE Rev Biomed Eng. 2021;14:139-155. doi: 10.1109/RBME.2020.3008792. Epub 2021 Jan 22.
5
Control of neuronal excitability by GSK-3beta: Epilepsy and beyond.
Biochim Biophys Acta Mol Cell Res. 2020 Sep;1867(9):118745. doi: 10.1016/j.bbamcr.2020.118745. Epub 2020 May 23.
6
The Role of Excitability and Network Structure in the Emergence of Focal and Generalized Seizures.
Front Neurol. 2020 Feb 11;11:74. doi: 10.3389/fneur.2020.00074. eCollection 2020.
7
Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network.
IEEE Trans Neural Syst Rehabil Eng. 2020 Apr;28(4):782-794. doi: 10.1109/TNSRE.2020.2973434. Epub 2020 Feb 12.
8
Early prediction of epileptic seizures using a long-term recurrent convolutional network.
J Neurosci Methods. 2019 Nov 1;327:108395. doi: 10.1016/j.jneumeth.2019.108395. Epub 2019 Aug 10.
9
Endogenous multidien rhythm of epilepsy in rats.
Exp Neurol. 2019 May;315:82-87. doi: 10.1016/j.expneurol.2019.02.006. Epub 2019 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验