Amirjani Amirmostafa, Shokrani Parand, Sharif Sepideh Abbasi, Moheb Hossein, Ahmadi Hossein, Ahmadiani Zahra Sadreddini, Paroushi Maryam Sharifi
Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, Iran.
Faculty of New Sciences and Technologies, University of Tehran, North Kargar, Iran.
J Mater Chem B. 2023 Apr 26;11(16):3537-3566. doi: 10.1039/d2tb02801h.
Plasmonic nanostructures can be used to tackle the shortcomings of conventional photosensitizers in photodynamic therapy (PDT) of cancers, including their low reactive oxygen species (ROS) quantum yield, stability, and targetability. However, the positive role of plasmonic nanostructures is not limited to their ability for ROS generation or singlet oxygen formation. The main advantage of plasmonic nanostructures relies on the collective oscillation of free electrons, the so-called surface plasmon resonance (SPR), which can trigger plenty of optical phenomena in their near-field. Surface plasmon resonance is highly dependent on the morphology, size, and composition of the plasmonic nanostructure, which can give one the ability to control the wavelength of light-matter interaction, which is highly desirable in PDT applications. This review has focused on the conjugation of plasmonic nanostructures with organic compounds, biological compounds, ceramic nanoparticles, polymeric nanoparticles, metal-organic frameworks (MOFs), and magnetic nanoparticles from a mechanistic point of view. Hybridization of plasmonic nanoparticles would enable plenty of optical mechanisms beneficial for the PDT process that has been extensively discussed by presenting the most recent efforts in each category. This review can be a useful guideline for researchers working on enhancing the efficiency of the PDT process and those interested in plasmon-enhanced phenomena by emphasizing the underlying mechanisms.
等离子体纳米结构可用于解决传统光敏剂在癌症光动力疗法(PDT)中的缺点,包括其低活性氧(ROS)量子产率、稳定性和靶向性。然而,等离子体纳米结构的积极作用不仅限于其产生ROS或单线态氧的能力。等离子体纳米结构的主要优点依赖于自由电子的集体振荡,即所谓的表面等离子体共振(SPR),它可以在其近场中引发大量光学现象。表面等离子体共振高度依赖于等离子体纳米结构的形态、尺寸和组成,这使得人们能够控制光与物质相互作用的波长,这在PDT应用中是非常理想的。本综述从机理的角度重点关注了等离子体纳米结构与有机化合物、生物化合物、陶瓷纳米颗粒、聚合物纳米颗粒、金属有机框架(MOF)和磁性纳米颗粒的共轭。通过介绍每个类别中的最新研究成果,等离子体纳米颗粒的杂交将实现许多有利于PDT过程的光学机制,这一点已得到广泛讨论。通过强调潜在机制,本综述可为致力于提高PDT过程效率的研究人员以及对等离子体增强现象感兴趣的人员提供有用的指导。