Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
Department of Electrical and Computer Engineering and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA; email:
Annu Rev Biomed Eng. 2023 Jun 8;25:207-232. doi: 10.1146/annurev-bioeng-081622-025405. Epub 2023 Mar 31.
Photoacoustic techniques have shown promise in identifying molecular changes in bone tissue and visualizing tissue microstructure. This capability represents significant advantages over gold standards (i.e., dual-energy X-ray absorptiometry) for bone evaluation without requiring ionizing radiation. Instead, photoacoustic imaging uses light to penetrate through bone, followed by acoustic pressure generation, resulting in highly sensitive optical absorption contrast in deep biological tissues. This review covers multiple bone-related photoacoustic imaging contributions to clinical applications, spanning bone cancer, joint pathologies, spinal disorders, osteoporosis, bone-related surgical guidance, consolidation monitoring, and transsphenoidal and transcranial imaging. We also present a summary of photoacoustic-based techniques for characterizing biomechanical properties of bone, including temperature, guided waves, spectral parameters, and spectroscopy. We conclude with a future outlook based on the current state of technological developments, recent achievements, and possible new directions.
光声技术在识别骨组织中的分子变化和可视化组织微观结构方面显示出了潜力。与骨评估的金标准(即双能 X 射线吸收法)相比,这种技术具有显著的优势,因为它不需要电离辐射。相反,光声成像是利用光穿透骨骼,然后产生声压,从而在深层生物组织中产生高灵敏度的光吸收对比。这篇综述涵盖了光声成像在多个与骨相关的临床应用中的贡献,包括骨癌、关节病变、脊柱疾病、骨质疏松症、与骨相关的手术指导、巩固监测以及经蝶窦和经颅成像。我们还总结了基于光声技术的骨生物力学特性的表征方法,包括温度、导波、光谱参数和光谱学。最后,我们根据当前技术发展的现状、最近的成就和可能的新方向,对未来进行了展望。