Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, Paris 75005, France.
INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, via Sommarive 14, I-38123 Povo, Trento, Italy.
Phys Rev Lett. 2023 Mar 17;130(11):111501. doi: 10.1103/PhysRevLett.130.111501.
Vacuum quantum fluctuations near horizons are known to yield correlated emission by the Hawking effect. We use a driven-dissipative quantum fluid of microcavity polaritons as an analog model of a quantum field theory on a black-hole spacetime and numerically calculate correlated emission. We show that, in addition to the Hawking effect at the sonic horizon, quantum fluctuations may result in a sizable stationary excitation of a quasinormal mode of the field theory. Observable signatures of the excitation of the quasinormal mode are found in the spatial density fluctuations as well as in the spectrum of Hawking emission. This suggests an intrinsic fluctuation-driven mechanism leading to the quantum excitation of quasinormal modes on black hole spacetimes.
众所周知,视界附近的真空量子涨落通过霍金效应产生相关发射。我们使用微腔极化激元的驱动耗散量子流体作为黑洞时空中量子场论的模拟模型,并对相关发射进行数值计算。我们表明,除了声速视界处的霍金效应之外,量子涨落可能导致场论的拟正则模式的可观的稳定激发。在霍金发射的光谱以及空间密度涨落中,发现了拟正则模式激发的可观测特征。这表明在黑洞时空中,存在一种固有波动驱动机制导致拟正则模式的量子激发。