Suppr超能文献

重组大肠杆菌中全细胞生物转化同时合成山梨醇和葡萄糖酸。

Whole-cell biotransformation for simultaneous synthesis of allitol and d-gluconic acid in recombinant Escherichia coli.

机构信息

College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.

出版信息

J Biosci Bioeng. 2023 Jun;135(6):433-439. doi: 10.1016/j.jbiosc.2023.03.004. Epub 2023 Mar 30.

Abstract

Allitol and gluconic acid (GA) are important industrial compounds that are preferably produced via bio-production processes. In this research, d-psicose-3-epimerase (DPEase), glucose dehydrogenase (GDH), and ribitol dehydrogenase (RDH) were heterologously expressed in Escherichia coli, realizing the co-production of allitol and GA. Compared to the loss of carbon flux from formate dehydrogenase (FDH), glucose dehydrogenase can produce GA while generating NAD(H). The recombinant strain Ec/pAd-pRrg boosted NADH production to 2.4 μmol/gDCW, 118% higher than with the control strain. Under the optimized conditions, 12.0 g/L allitol and 14.8 g/L GA were produced from 25 g/L d-fructose and 20 g/L d-glucose; i.e., 66.7% and 66.3% higher yields compared to the case of fermentation without optimization, respectively. Furthermore, 42.7 g/L allitol and 56.2 g/L GA can be obtained from pretreated molasses (containing 139.2 g/L d-fructose and 149.1 g/L d-glucose). This work provides a practicable strategy for industrial and efficient co-production of allitol and GA from a cheap raw substrate.

摘要

阿糖醇和葡萄糖酸(GA)是重要的工业化合物,最好通过生物生产工艺来生产。在这项研究中,d-阿洛酮糖-3-差向异构酶(DPEase)、葡萄糖脱氢酶(GDH)和肌醇脱氢酶(RDH)在大肠杆菌中异源表达,实现了阿糖醇和 GA 的共生产。与甲酸脱氢酶(FDH)的碳通量损失相比,葡萄糖脱氢酶在产生 NAD(H)的同时可以产生 GA。重组菌株 Ec/pAd-pRrg 将 NADH 产量提高到 2.4 μmol/gDCW,比对照菌株高 118%。在优化条件下,从 25 g/L d-果糖和 20 g/L d-葡萄糖中生产了 12.0 g/L 阿糖醇和 14.8 g/L GA,与未优化发酵相比,分别提高了 66.7%和 66.3%。此外,从预处理糖蜜(含有 139.2 g/L d-果糖和 149.1 g/L d-葡萄糖)中可以获得 42.7 g/L 阿糖醇和 56.2 g/L GA。这项工作为从廉价原料工业高效共生产阿糖醇和 GA 提供了可行的策略。

相似文献

1
Whole-cell biotransformation for simultaneous synthesis of allitol and d-gluconic acid in recombinant Escherichia coli.
J Biosci Bioeng. 2023 Jun;135(6):433-439. doi: 10.1016/j.jbiosc.2023.03.004. Epub 2023 Mar 30.
3
Efficient Allitol Bioproduction from D-Fructose Catalyzed by Recombinant E. coli Whole Cells, and the Condition Optimization, Product Purification.
Appl Biochem Biotechnol. 2020 Oct;192(2):680-697. doi: 10.1007/s12010-020-03359-x. Epub 2020 Jun 9.
4
Reconstruction of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Efficient Biosynthesis of Allitol from d-Glucose.
J Agric Food Chem. 2022 Mar 30;70(12):3775-3784. doi: 10.1021/acs.jafc.2c00440. Epub 2022 Mar 17.
5
Construction of allitol synthesis pathway by multi-enzyme coexpression in Escherichia coli and its application in allitol production.
J Ind Microbiol Biotechnol. 2015 May;42(5):661-9. doi: 10.1007/s10295-014-1578-1. Epub 2015 Feb 28.
7
Enhanced production of D-psicose from D-fructose by a redox-driven multi-enzyme cascade system.
Enzyme Microb Technol. 2023 Feb;163:110172. doi: 10.1016/j.enzmictec.2022.110172. Epub 2022 Dec 5.
8
Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation.
Appl Microbiol Biotechnol. 2004 Apr;64(3):333-9. doi: 10.1007/s00253-003-1470-9. Epub 2003 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验