DTU HealthTech, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.
UCL Division of Infection and Immunity, University College London, London, UK.
Commun Biol. 2023 Mar 31;6(1):357. doi: 10.1038/s42003-023-04702-8.
Changes in the T cell receptor (TCR) repertoires have become important markers for monitoring disease or therapy progression. With the rise of immunotherapy usage in cancer, infectious and autoimmune disease, accurate assessment and comparison of the "state" of the TCR repertoire has become paramount. One important driver of change within the repertoire is T cell proliferation following immunisation. A way of monitoring this is by investigating large clones of individual T cells believed to bind epitopes connected to the disease. However, as a single target can be bound by many different TCRs, monitoring individual clones cannot fully account for T cell cross-reactivity. Moreover, T cells responding to the same target often exhibit higher sequence similarity, which highlights the importance of accounting for TCR similarity within the repertoire. This complexity of binding relationships between a TCR and its target convolutes comparison of immune responses between individuals or comparisons of TCR repertoires at different timepoints. Here we propose TCRDivER algorithm (T cell Receptor Diversity Estimates for Repertoires), a global method of T cell repertoire comparison using diversity profiles sensitive to both clone size and sequence similarity. This approach allowed for distinction between spleen TCR repertoires of immunised and non-immunised mice, showing the need for including both facets of repertoire changes simultaneously. The analysis revealed biologically interpretable relationships between sequence similarity and clonality. These aid in understanding differences and separation of repertoires stemming from different biological context. With the rise of availability of sequencing data we expect our tool to find broad usage in clinical and research applications.
T 细胞受体 (TCR) 谱的变化已成为监测疾病或治疗进展的重要标志物。随着免疫疗法在癌症、传染病和自身免疫性疾病中的应用兴起,准确评估和比较 TCR 谱的“状态”变得至关重要。谱内变化的一个重要驱动因素是免疫接种后 T 细胞的增殖。监测这种变化的一种方法是研究被认为与疾病相关表位结合的个体 T 细胞的大克隆。然而,由于单个靶标可以被许多不同的 TCR 结合,因此监测单个克隆并不能完全说明 T 细胞的交叉反应性。此外,对同一靶标作出反应的 T 细胞通常表现出更高的序列相似性,这突出了在谱内考虑 TCR 相似性的重要性。TCR 与其靶标之间结合关系的这种复杂性使得比较个体之间的免疫反应或在不同时间点比较 TCR 谱变得复杂。在这里,我们提出了 TCRDivER 算法(用于谱系的 T 细胞受体多样性估计),这是一种使用对克隆大小和序列相似性都敏感的多样性谱进行 T 细胞谱系比较的全局方法。这种方法能够区分免疫和非免疫小鼠的脾脏 TCR 谱系,表明需要同时包含谱系变化的两个方面。分析揭示了序列相似性和克隆性之间具有生物学可解释的关系。这些有助于理解源自不同生物学背景的谱系之间的差异和分离。随着测序数据可用性的增加,我们预计我们的工具将在临床和研究应用中得到广泛应用。