Suppr超能文献

利用粗粒化正则模态引导的快速构象采样来预测别构位点。

Predicting allosteric sites using fast conformational sampling as guided by coarse-grained normal modes.

机构信息

Department of Physics, University at Buffalo, 239 Fronczak Hall, Buffalo, New York 14260, USA.

出版信息

J Chem Phys. 2023 Mar 28;158(12):124127. doi: 10.1063/5.0141630.

Abstract

To computationally identify cryptic binding sites for allosteric modulators, we have developed a fast and simple conformational sampling scheme guided by coarse-grained normal modes solved from the elastic network models followed by atomistic backbone and sidechain reconstruction. Despite the complexity of conformational changes associated with ligand binding, we previously showed that simply sampling along each of the lowest 30 modes can adequately restructure cryptic sites so they are detectable by pocket finding programs like Concavity. Here, we applied this method to study four classical examples of allosteric regulation (GluR2 receptor, GroEL chaperonin, GPCR, and myosin). Our method along with alternative methods has been utilized to locate known allosteric sites and predict new promising allosteric sites. Compared with other sampling methods based on extensive molecular dynamics simulation, our method is both faster (1-2 h for an average-size protein of ∼400 residues) and more flexible (it can be easily integrated with any structure-based pocket finding methods), so it is suitable for high-throughput screening of large datasets of protein structures at the genome scale.

摘要

为了计算识别别构调节剂的隐蔽结合位点,我们开发了一种快速简单的构象采样方案,该方案由弹性网络模型中求解的粗粒化正则模态引导,然后进行原子主干和侧链重建。尽管与配体结合相关的构象变化很复杂,但我们之前已经表明,仅沿着最低的 30 个模态中的每一个进行采样,就可以充分重构隐蔽的位点,从而使它们可以被口袋发现程序(如 Concavity)检测到。在这里,我们应用该方法研究了四个经典的别构调节例子(GluR2 受体、GroEL 伴侣蛋白、GPCR 和肌球蛋白)。我们的方法以及其他替代方法已被用于定位已知的别构位点和预测新的有希望的别构位点。与基于广泛分子动力学模拟的其他采样方法相比,我们的方法更快(对于平均大小为 400 个残基左右的蛋白质,耗时 1-2 小时),更灵活(可以轻松集成任何基于结构的口袋发现方法),因此适用于高通量筛选基因组规模的大型蛋白质结构数据集。

相似文献

2
Predicting cryptic ligand binding sites based on normal modes guided conformational sampling.
Proteins. 2021 Apr;89(4):416-426. doi: 10.1002/prot.26027. Epub 2020 Dec 5.
4
Piecing Together the Allosteric Patterns of Chaperonin GroEL.
J Phys Chem B. 2017 May 18;121(19):4987-4996. doi: 10.1021/acs.jpcb.7b01992. Epub 2017 May 4.
5
Predicting Protein Dynamics and Allostery Using Multi-Protein Atomic Distance Constraints.
Structure. 2017 Mar 7;25(3):546-558. doi: 10.1016/j.str.2017.01.008. Epub 2017 Feb 9.
6
Exploiting protein flexibility to predict the location of allosteric sites.
BMC Bioinformatics. 2012 Oct 25;13:273. doi: 10.1186/1471-2105-13-273.
8
Predicting large-scale conformational changes in proteins using energy-weighted normal modes.
Proteins. 2011 Oct;79(10):2778-93. doi: 10.1002/prot.23105. Epub 2011 Aug 22.
9
Bridging between NMA and Elastic Network Models: Preserving All-Atom Accuracy in Coarse-Grained Models.
PLoS Comput Biol. 2015 Oct 16;11(10):e1004542. doi: 10.1371/journal.pcbi.1004542. eCollection 2015 Oct.

本文引用的文献

1
Predicting allosteric pockets in protein biological assemblages.
Bioinformatics. 2023 May 4;39(5). doi: 10.1093/bioinformatics/btad275.
2
PASSer: Prediction of Allosteric Sites Server.
Mach Learn Sci Technol. 2021 Sep;2(3). doi: 10.1088/2632-2153/abe6d6. Epub 2021 May 13.
3
Predicting cryptic ligand binding sites based on normal modes guided conformational sampling.
Proteins. 2021 Apr;89(4):416-426. doi: 10.1002/prot.26027. Epub 2020 Dec 5.
4
Essential site scanning analysis: A new approach for detecting sites that modulate the dispersion of protein global motions.
Comput Struct Biotechnol J. 2020 Jun 18;18:1577-1586. doi: 10.1016/j.csbj.2020.06.020. eCollection 2020.
5
Investigating Cryptic Binding Sites by Molecular Dynamics Simulations.
Acc Chem Res. 2020 Mar 17;53(3):654-661. doi: 10.1021/acs.accounts.9b00613. Epub 2020 Mar 5.
6
Cryptic binding sites on proteins: definition, detection, and druggability.
Curr Opin Chem Biol. 2018 Jun;44:1-8. doi: 10.1016/j.cbpa.2018.05.003. Epub 2018 May 23.
7
Exploring the structural origins of cryptic sites on proteins.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3416-E3425. doi: 10.1073/pnas.1711490115. Epub 2018 Mar 26.
8
Software for molecular docking: a review.
Biophys Rev. 2017 Apr;9(2):91-102. doi: 10.1007/s12551-016-0247-1. Epub 2017 Jan 16.
9
A survey of coarse-grained methods for modeling protein conformational transitions.
Curr Opin Struct Biol. 2017 Feb;42:24-30. doi: 10.1016/j.sbi.2016.10.008. Epub 2016 Oct 28.
10
Allostery: An Overview of Its History, Concepts, Methods, and Applications.
PLoS Comput Biol. 2016 Jun 2;12(6):e1004966. doi: 10.1371/journal.pcbi.1004966. eCollection 2016 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验