Suppr超能文献

分馏因子揭示古老变构模块中的隐藏挫折。

Fractionation factors reveal hidden frustration in an ancient allosteric module.

机构信息

Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada.

出版信息

J Chem Phys. 2023 Mar 28;158(12):121101. doi: 10.1063/5.0139510.

Abstract

Protein kinase G (PKG) is an essential regulator of eukaryotic cyclic guanosine monophosphate (cGMP)-dependent intracellular signaling, controlling pathways that are often distinct from those regulated by cyclic adenosine monophosphate (cAMP). Specifically, the C-terminal cyclic-nucleotide-binding domain (CNB-B) of PKG has emerged as a critical module to control allostery and cGMP-selectivity in PKG. While key contributions to the cGMP-versus-cAMP selectivity of CNB-B were previously assessed, only limited knowledge is currently available on how cyclic nucleotide binding rewires the network of hydrogen bonds in CNB-B, and how such rewiring contributes to allostery and cGMP selectivity. To address this gap, we extend the comparative analysis of apo, cAMP- and cGMP-bound CNB-B to H/D fractionation factors (FFs), which are well-suited for assessing backbone hydrogen-bond strengths within proteins. Apo-vs-bound comparisons inform of perturbations arising from both binding and allostery, while cGMP-bound vs cAMP-bound comparisons inform of perturbations that are purely allosteric. The comparative FF analyses of the bound states revealed mixed patterns of hydrogen-bond strengthening and weakening, pointing to inherent frustration, whereby not all hydrogen bonds can be simultaneously stabilized. Interestingly, contrary to expectations, these patterns include a weakening of hydrogen bonds not only within critical recognition and allosteric elements of CNB-B, but also within elements known to undergo rigid-body movement upon cyclic nucleotide binding. These results suggest that frustration may contribute to the reversibility of allosteric conformational shifts by avoiding over-rigidification that may otherwise trap CNB-B in its active state. Considering that PKG CNB-B serves as a prototype for allosteric conformational switches, similar concepts may be applicable to allosteric domains in general.

摘要

蛋白激酶 G(PKG)是真核细胞环鸟苷酸单磷酸(cGMP)依赖性细胞内信号转导的必需调节剂,控制着通常与环腺苷酸单磷酸(cAMP)调节途径不同的途径。具体而言,PKG 的 C 端环核苷酸结合域(CNB-B)已成为控制 PKG 变构和 cGMP 选择性的关键模块。虽然以前已经评估了 CNB-B 对 cGMP 与 cAMP 选择性的关键贡献,但目前对于环核苷酸结合如何重新布线 CNB-B 中氢键网络以及这种重新布线如何有助于变构和 cGMP 选择性的知识仍然有限。为了解决这一差距,我们将 apo、cAMP 和 cGMP 结合的 CNB-B 的比较分析扩展到 H/D 分馏因子(FF),FF 非常适合评估蛋白质中氢键的强度。apo-vs-结合比较提供了来自结合和变构的扰动信息,而 cGMP-结合与 cAMP-结合比较提供了仅为变构的扰动信息。结合状态的比较 FF 分析显示出氢键增强和削弱的混合模式,表明存在固有挫折,即并非所有氢键都可以同时稳定。有趣的是,与预期相反,这些模式不仅包括 CNB-B 的关键识别和变构元件内氢键的削弱,还包括已知在环核苷酸结合时发生刚体运动的元件内氢键的削弱。这些结果表明,挫折可能通过避免过度僵化来促进变构构象变化的可逆性,否则可能会使 CNB-B 处于其活性状态。考虑到 PKG CNB-B 作为变构构象开关的原型,类似的概念可能适用于一般的变构域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验