Suppr超能文献

在具有周期性势的经典波粒实体的洛伦兹系统中,动力学、干扰效应和多稳定性。

Dynamics, interference effects, and multistability in a Lorenz-like system of a classical wave-particle entity in a periodic potential.

机构信息

School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.

出版信息

Chaos. 2023 Mar;33(3):033147. doi: 10.1063/5.0125727.

Abstract

A classical wave-particle entity (WPE) can be realized experimentally as a droplet walking on the free surface of a vertically vibrating liquid bath, with the droplet's horizontal walking motion guided by its self-generated wave field. These self-propelled WPEs have been shown to exhibit analogs of several quantum and optical phenomena. Using an idealized theoretical model that takes the form of a Lorenz-like system, we theoretically and numerically explore the dynamics of such a one-dimensional WPE in a sinusoidal potential. We find steady states of the system that correspond to a stationary WPE as well as a rich array of unsteady motions, such as back-and-forth oscillating walkers, runaway oscillating walkers, and various types of irregular walkers. In the parameter space formed by the dimensionless parameters of the applied sinusoidal potential, we observe patterns of alternating unsteady behaviors suggesting interference effects. Additionally, in certain regions of the parameter space, we also identify multistability in the particle's long-term behavior that depends on the initial conditions. We make analogies between the identified behaviors in the WPE system and Bragg's reflection of light as well as electron motion in crystals.

摘要

一种经典的波粒二象性实体(WPE)可以通过在垂直振动的液体浴表面上行走的液滴来实验实现,液滴的水平行走运动由其自生成的波场引导。这些自主推进的 WPE 已经被证明表现出了几种量子和光学现象的类似物。我们使用一个理想化的理论模型,其形式为洛伦兹系统,从理论和数值上研究了这种一维 WPE 在正弦势中的动力学。我们发现系统的稳态对应于稳定的 WPE 以及丰富的非稳态运动,例如来回振荡的步行者、失控的振荡步行者和各种不规则的步行者。在由施加的正弦势的无量纲参数形成的参数空间中,我们观察到交替出现的非稳态行为模式,暗示着干涉效应。此外,在参数空间的某些区域,我们还确定了粒子长期行为的多稳定性,这取决于初始条件。我们将 WPE 系统中识别出的行为与光的布拉格反射以及晶体中的电子运动进行了类比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验