Suppr超能文献

储层计算作为非线性动力系统的数字孪生。

Reservoir computing as digital twins for nonlinear dynamical systems.

机构信息

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.

Vehicle Technology Directorate, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783-1138, USA.

出版信息

Chaos. 2023 Mar;33(3):033111. doi: 10.1063/5.0138661.

Abstract

We articulate the design imperatives for machine learning based digital twins for nonlinear dynamical systems, which can be used to monitor the "health" of the system and anticipate future collapse. The fundamental requirement for digital twins of nonlinear dynamical systems is dynamical evolution: the digital twin must be able to evolve its dynamical state at the present time to the next time step without further state input-a requirement that reservoir computing naturally meets. We conduct extensive tests using prototypical systems from optics, ecology, and climate, where the respective specific examples are a chaotic CO laser system, a model of phytoplankton subject to seasonality, and the Lorenz-96 climate network. We demonstrate that, with a single or parallel reservoir computer, the digital twins are capable of a variety of challenging forecasting and monitoring tasks. Our digital twin has the following capabilities: (1) extrapolating the dynamics of the target system to predict how it may respond to a changing dynamical environment, e.g., a driving signal that it has never experienced before, (2) making continual forecasting and monitoring with sparse real-time updates under non-stationary external driving, (3) inferring hidden variables in the target system and accurately reproducing/predicting their dynamical evolution, (4) adapting to external driving of different waveform, and (5) extrapolating the global bifurcation behaviors to network systems of different sizes. These features make our digital twins appealing in applications, such as monitoring the health of critical systems and forecasting their potential collapse induced by environmental changes or perturbations. Such systems can be an infrastructure, an ecosystem, or a regional climate system.

摘要

我们阐述了基于机器学习的非线性动力系统数字孪生的设计原则,这些数字孪生可用于监测系统的“健康”状况并预测未来的崩溃。非线性动力系统数字孪生的基本要求是动态演变:数字孪生体必须能够在没有进一步状态输入的情况下,将当前的动态状态演变为下一个时间步长——这一要求自然由储层计算来满足。我们使用来自光学、生态学和气候学的原型系统进行了广泛的测试,其中分别是一个混沌 CO 激光系统、一个受季节性影响的浮游植物模型以及洛伦兹-96 气候网络。我们证明,使用单个或并行储层计算机,数字孪生体能够完成各种具有挑战性的预测和监测任务。我们的数字孪生体具有以下功能:(1)推断目标系统的动态特性,以预测它可能如何应对动态环境的变化,例如它从未经历过的驱动信号;(2)在非平稳外部驱动下进行连续预测和监测,实时更新稀疏;(3)推断目标系统中的隐藏变量,并准确再现/预测它们的动态演变;(4)适应不同波形的外部驱动;(5)推断全局分岔行为到不同大小的网络系统。这些特性使得我们的数字孪生体在应用中具有吸引力,例如监测关键系统的健康状况并预测其因环境变化或干扰而潜在崩溃的可能性。这些系统可以是基础设施、生态系统或区域气候系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验