Suppr超能文献

构建用于非线性动力系统预测中水库计算的多项式库。

Constructing polynomial libraries for reservoir computing in nonlinear dynamical system forecasting.

作者信息

Ren Hu-Hu, Bai Yu-Long, Fan Man-Hong, Ding Lin, Yue Xiao-Xin, Yu Qing-He

机构信息

College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.

出版信息

Phys Rev E. 2024 Feb;109(2-1):024227. doi: 10.1103/PhysRevE.109.024227.

Abstract

Reservoir computing is an effective model for learning and predicting nonlinear and chaotic dynamical systems; however, there remains a challenge in achieving a more dependable evolution for such systems. Based on the foundation of Koopman operator theory, considering the effectiveness of the sparse identification of nonlinear dynamics algorithm to construct candidate nonlinear libraries in the application of nonlinear data, an alternative reservoir computing method is proposed, which creates the linear Hilbert space of the nonlinear system by including nonlinear terms in the optimization process of reservoir computing, allowing for the application of linear optimization. We introduce an implementation that incorporates a polynomial transformation of arbitrary order when fitting the readout matrix. Constructing polynomial libraries with reservoir-state vectors as elements enhances the nonlinear representation of reservoir states and more easily captures the complexity of nonlinear systems. The Lorenz-63 system, the Lorenz-96 system, and the Kuramoto-Sivashinsky equation are used to validate the effectiveness of constructing polynomial libraries for reservoir states in the field of state-evolution prediction of nonlinear and chaotic dynamical systems. This study not only promotes the theoretical study of reservoir computing, but also provides a theoretical and practical method for the prediction of nonlinear and chaotic dynamical system evolution.

摘要

储层计算是一种用于学习和预测非线性及混沌动力系统的有效模型;然而,要实现此类系统更可靠的演化仍存在挑战。基于柯普曼算子理论的基础,考虑到非线性动力学算法的稀疏识别在非线性数据应用中构建候选非线性库的有效性,提出了一种替代的储层计算方法,该方法通过在储层计算的优化过程中纳入非线性项来创建非线性系统的线性希尔伯特空间,从而允许应用线性优化。我们介绍一种在拟合读出矩阵时纳入任意阶多项式变换的实现方法。以储层状态向量为元素构建多项式库可增强储层状态的非线性表示,并更轻松地捕捉非线性系统的复杂性。利用洛伦兹 - 63系统、洛伦兹 - 96系统和Kuramoto - Sivashinsky方程来验证在非线性和混沌动力系统的状态演化预测领域中为储层状态构建多项式库的有效性。本研究不仅推动了储层计算的理论研究,还为非线性和混沌动力系统演化的预测提供了一种理论和实用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验