Suppr超能文献

基于机器学习方法的苯丙酮尿症等位基因表型预测。

Allelic phenotype prediction of phenylketonuria based on the machine learning method.

机构信息

Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, 450052, Henan, People's Republic of China.

Neonatal Screening Center, The Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, 450052, Henan, People's Republic of China.

出版信息

Hum Genomics. 2023 Mar 31;17(1):34. doi: 10.1186/s40246-023-00481-9.

Abstract

BACKGROUND

Phenylketonuria (PKU) is caused by mutations in the phenylalanine hydroxylase (PAH) gene. Our study aimed to predict the phenotype using the allelic genotype.

METHODS

A total of 1291 PKU patients with 623 various variants were used as the training dataset for predicting allelic phenotypes. We designed a common machine learning framework to predict allelic genotypes associated with the phenotype.

RESULTS

We identified 235 different mutations and 623 various allelic genotypes. The features extracted from the structure of mutations and graph properties of the PKU network to predict the phenotype of PKU were named PPML (PKU phenotype predicted by machine learning). The phenotype of PKU was classified into three different categories: classical PKU (cPKU), mild PKU (mPKU) and mild hyperphenylalaninemia (MHP). Three hub nodes (c.728G>A for cPKU, c.721 for mPKU and c.158G>A for HPA) were used as each classification center, and 5 node attributes were extracted from the network graph for machine learning training features. The area under the ROC curve was AUC = 0.832 for cPKU, AUC = 0.678 for mPKU and AUC = 0.874 for MHP. This suggests that PPML is a powerful method to predict allelic phenotypes in PKU and can be used for genetic counseling of PKU families.

CONCLUSIONS

The web version of PPML predicts PKU allele classification supported by applicable real cases and prediction results. It is an online database that can be used for PKU phenotype prediction http://www.bioinfogenetics.info/PPML/ .

摘要

背景

苯丙酮尿症(PKU)是由苯丙氨酸羟化酶(PAH)基因突变引起的。我们的研究旨在通过等位基因基因型预测表型。

方法

我们使用 1291 名 PKU 患者的 623 种不同变体作为训练数据集,用于预测等位基因表型。我们设计了一个常见的机器学习框架来预测与表型相关的等位基因基因型。

结果

我们鉴定出 235 种不同的突变和 623 种不同的等位基因基因型。从突变结构和 PKU 网络的图性质中提取的特征用于预测 PKU 的表型,称为 PPML(机器学习预测的 PKU 表型)。PKU 的表型分为三个不同的类别:经典 PKU(cPKU)、轻度 PKU(mPKU)和轻度高苯丙氨酸血症(MHP)。三个枢纽节点(c.728G>A 用于 cPKU,c.721 用于 mPKU,c.158G>A 用于 HPA)用作每个分类中心,从网络图形中提取 5 个节点属性作为机器学习训练特征。cPKU 的 AUC 为 0.832,mPKU 的 AUC 为 0.678,MHP 的 AUC 为 0.874。这表明 PPML 是一种强大的方法,可以预测 PKU 中的等位基因表型,可用于 PKU 家庭的遗传咨询。

结论

PPML 的网页版本支持适用的实际案例和预测结果,用于预测 PKU 等位基因分类。它是一个在线数据库,可用于 PKU 表型预测:http://www.bioinfogenetics.info/PPML/。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d915/10064562/c02ab39912b1/40246_2023_481_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验