Suppr超能文献

好的,请你提供需要翻译的文本,我会尽力为你翻译。

Granule formation mechanism, key influencing factors, and resource recycling in aerobic granular sludge (AGS) wastewater treatment: A review.

机构信息

School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.

School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.

出版信息

J Environ Manage. 2023 Jul 15;338:117771. doi: 10.1016/j.jenvman.2023.117771. Epub 2023 Mar 31.

Abstract

The high-efficiency and additionally economic benefits generated from aerobic granular sludge (AGS) wastewater treatment have led to its increasing popularity among academics and industrial players. The AGS process can recycle high value-added biomaterials including extracellular polymeric substances (EPS), sodium alginate-like external polymer (ALE), polyhydroxyfatty acid (PHA), and phosphorus (P), etc., which can serve various fields including agriculture, construction, and chemical while removing pollutants from wastewaters. The effects of various key operation parameters on formation and structural stability of AGS are comprehensively summarized. The degradable metabolism of typical pollutants and corresponding microbial diversity and succession in the AGS wastewater treatment system are also discussed, especially with a focus on emerging contaminants removal. In addition, recent attempts for potentially effective production of high value-added biomaterials from AGS are proposed, particularly concerning improving the yield, quality, and application of these biomaterials. This review aims to provide a reference for in-depth research on the AGS process, suggesting a new alternative for wastewater treatment recycling.

摘要

好的,请提供需要翻译的文本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验