Suppr超能文献

鱼类和四足动物听力所需各种结构的进化。

The evolution of the various structures required for hearing in and tetrapods.

作者信息

Fritzsch Bernd, Schultze Hans-Peter, Elliott Karen L

机构信息

Department of Biology & Department of Otolaryngology, University of Iowa, IA, USA.

Biodiversity Institute, University of Kansas, Lawrence, KS, USA.

出版信息

IBRO Neurosci Rep. 2023 Mar 22;14:325-341. doi: 10.1016/j.ibneur.2023.03.007. eCollection 2023 Jun.

Abstract

Sarcopterygians evolved around 415 Ma and have developed a unique set of features, including the basilar papilla and the cochlear aqueduct of the inner ear. We provide an overview that shows the morphological integration of the various parts needed for hearing, e.g., basilar papilla, tectorial membrane, cochlear aqueduct, lungs, and tympanic membranes. The lagena of the inner ear evolved from a common macula of the saccule several times. It is near this lagena where the basilar papilla forms in and tetrapods. The basilar papilla is lost in lungfish, certain caecilians and salamanders, but is transformed into the cochlea of mammals. Hearing in bony fish and tetrapods involves particle motion to improve sound pressure reception within the ear but also works without air. Lungs evolved after the chondrichthyans diverged and are present in sarcopterygians and actinopterygians. Lungs open to the outside in tetraposomorph sarcopterygians but are transformed from a lung into a swim bladder in ray-finned fishes. Elasmobranchs, polypterids, and many fossil fishes have open spiracles. In , most frogs, and all amniotes, a tympanic membrane covering the spiracle evolved independently. The tympanic membrane is displaced by pressure changes and enabled tetrapods to perceive airborne sound pressure waves. The hyomandibular bone is associated with the spiracle/tympanic membrane in actinopterygians and piscine sarcopterygians. In tetrapods, it transforms into the stapes that connects the oval window of the inner ear with the tympanic membrane and allows hearing at higher frequencies by providing an impedance matching and amplification mechanism. The three characters-basilar papilla, cochlear aqueduct, and tympanic membrane-are fluid related elements in sarcopterygians, which interact with a set of unique features in . Finally, we explore the possible interaction between the unique intracranial joint, basicranial muscle, and an enlarged notochord that allows fluid flow to the foramen magnum and the cochlear aqueduct which houses a comparatively small brain.

摘要

肉鳍鱼类大约在4.15亿年前进化而来,并形成了一系列独特的特征,包括基底乳头和内耳的蜗水管。我们提供了一个概述,展示了听力所需的各个部分的形态整合,例如基底乳头、盖膜、蜗水管、肺和鼓膜。内耳的瓶状囊多次从球囊的一个普通斑演化而来。在硬骨鱼和四足动物中,基底乳头就在这个瓶状囊附近形成。基底乳头在肺鱼、某些蚓螈和蝾螈中消失,但在哺乳动物中转化为耳蜗。硬骨鱼和四足动物的听力涉及粒子运动,以改善耳内的声压接收,但在没有空气的情况下也能起作用。肺在软骨鱼类分化后进化而来,存在于肉鳍鱼类和辐鳍鱼类中。在四足形肉鳍鱼类中,肺通向外部,但在辐鳍鱼类中从肺转变为鳔。板鳃亚纲鱼类、多鳍鱼和许多化石鱼类有开放的喷水孔。在硬骨鱼、大多数青蛙和所有羊膜动物中,覆盖喷水孔的鼓膜独立进化。鼓膜因压力变化而移位,使四足动物能够感知空气中的声压波。在辐鳍鱼类和鱼类肉鳍鱼类中,舌颌骨与喷水孔/鼓膜相关联。在四足动物中,它转化为镫骨,将内耳的卵圆窗与鼓膜连接起来,并通过提供阻抗匹配和放大机制,使更高频率的听力成为可能。基底乳头、蜗水管和鼓膜这三个特征是肉鳍鱼类中与流体相关的元素,它们与硬骨鱼中的一组独特特征相互作用。最后,我们探讨了独特的颅内关节、基底颅肌和扩大的脊索之间可能的相互作用,这种相互作用允许流体流向枕骨大孔和容纳相对较小大脑的蜗水管。

相似文献

1
The evolution of the various structures required for hearing in and tetrapods.
IBRO Neurosci Rep. 2023 Mar 22;14:325-341. doi: 10.1016/j.ibneur.2023.03.007. eCollection 2023 Jun.
2
Fish hearing revealed: Do we understand hearing in critical fishes and marine tetrapods.
J Acoust Soc Am. 2023 Nov 1;154(5):3019-3026. doi: 10.1121/10.0022355.
3
Inner ear of the coelacanth fish Latimeria has tetrapod affinities.
Nature. 1987;327(6118):153-4. doi: 10.1038/327153a0.
4
The ear region of Latimeria chalumnae: functional and evolutionary implications.
Zoology (Jena). 2003;106(3):233-42. doi: 10.1078/0944-2006-00119.
7
Mandibular musculature constrains brain-endocast disparity between sarcopterygians.
R Soc Open Sci. 2020 Sep 23;7(9):200933. doi: 10.1098/rsos.200933. eCollection 2020 Sep.
8
Infrasonic hearing in birds: a review of audiometry and hypothesized structure-function relationships.
Biol Rev Camb Philos Soc. 2020 Aug;95(4):1036-1054. doi: 10.1111/brv.12596. Epub 2020 Mar 31.
9
Hearing in the African lungfish (Protopterus annectens): pre-adaptation to pressure hearing in tetrapods?
Biol Lett. 2011 Feb 23;7(1):139-41. doi: 10.1098/rsbl.2010.0636. Epub 2010 Sep 8.
10
Better than fish on land? Hearing across metamorphosis in salamanders.
Proc Biol Sci. 2015 Mar 7;282(1802). doi: 10.1098/rspb.2014.1943.

引用本文的文献

3
4
Influence of inner ear impedance on middle ear sound transfer functions.
Heliyon. 2024 Mar 12;10(6):e27758. doi: 10.1016/j.heliyon.2024.e27758. eCollection 2024 Mar 30.
5
Evolution and development of extraocular motor neurons, nerves and muscles in vertebrates.
Ann Anat. 2024 Apr;253:152225. doi: 10.1016/j.aanat.2024.152225. Epub 2024 Feb 10.
6
Fish hearing revealed: Do we understand hearing in critical fishes and marine tetrapods.
J Acoust Soc Am. 2023 Nov 1;154(5):3019-3026. doi: 10.1121/10.0022355.

本文引用的文献

1
Hair cell morphological patterns and polarity organization in the sea lamprey vestibular cristae.
Anat Rec (Hoboken). 2023 Aug;306(8):2170-2184. doi: 10.1002/ar.25164. Epub 2023 Jan 18.
3
SOX9 and SOX10 control fluid homeostasis in the inner ear for hearing through independent and cooperative mechanisms.
Proc Natl Acad Sci U S A. 2022 Nov 16;119(46):e2122121119. doi: 10.1073/pnas.2122121119. Epub 2022 Nov 7.
4
Function of bidirectional sensitivity in the otolith organs established by transcription factor Emx2.
Nat Commun. 2022 Oct 24;13(1):6330. doi: 10.1038/s41467-022-33819-3.
6
ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization.
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2207433119. doi: 10.1073/pnas.2207433119. Epub 2022 Sep 8.
7
Evolutionary history of metazoan TMEM16 family.
Mol Phylogenet Evol. 2022 Dec;177:107595. doi: 10.1016/j.ympev.2022.107595. Epub 2022 Jul 30.
8
Lung evolution in vertebrates and the water-to-land transition.
Elife. 2022 Jul 26;11:e77156. doi: 10.7554/eLife.77156.
10
Hearing without a tympanic ear.
J Exp Biol. 2022 Jun 15;225(12). doi: 10.1242/jeb.244130. Epub 2022 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验