Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria.
Nat Commun. 2022 Jul 5;13(1):3878. doi: 10.1038/s41467-022-31580-1.
Different types of spiral ganglion neurons (SGNs) are essential for auditory perception by transmitting complex auditory information from hair cells (HCs) to the brain. Here, we use deep, single cell transcriptomics to study the molecular mechanisms that govern their identity and organization in mice. We identify a core set of temporally patterned genes and gene regulatory networks that may contribute to the diversification of SGNs through sequential binary decisions and demonstrate a role for NEUROD1 in driving specification of a I-SGN phenotype. We also find that each trajectory of the decision tree is defined by initial co-expression of alternative subtype molecular controls followed by gradual shifts toward cell fate resolution. Finally, analysis of both developing SGN and HC types reveals cell-cell signaling potentially playing a role in the differentiation of SGNs. Our results indicate that SGN identities are drafted prior to birth and reveal molecular principles that shape their differentiation and will facilitate studies of their development, physiology, and dysfunction.
不同类型的螺旋神经节神经元(SGNs)通过将复杂的听觉信息从毛细胞(HCs)传递到大脑,对听觉感知至关重要。在这里,我们使用深度单细胞转录组学来研究控制其在小鼠中身份和组织的分子机制。我们确定了一组核心的时间模式基因和基因调控网络,这些基因和基因调控网络可能通过顺序的二元决策促进 SGN 的多样化,并证明 NEUROD1 在驱动 I-SGN 表型的特化中发挥作用。我们还发现决策树的每条轨迹都由替代亚型分子控制的初始共表达定义,然后逐渐向细胞命运分辨率转变。最后,对发育中的 SGN 和 HC 类型的分析表明,细胞间信号可能在 SGN 分化中发挥作用。我们的研究结果表明,SGNs 的身份在出生前就已确定,并揭示了塑造其分化的分子原理,这将有助于研究它们的发育、生理学和功能障碍。