Suppr超能文献

交互式统计监测,以优化研究进行期间对潜在临床试验问题的审查。

Interactive statistical monitoring to optimize review of potential clinical trial issues during study conduct.

作者信息

Pau David, Lotz Marie, Grandclaude Gaëlle, Jegou Romain, Civet Alexandre

机构信息

Roche SAS, Boulogne, Billancourt, France.

Keyrus Life Science, Nantes, France.

出版信息

Contemp Clin Trials Commun. 2023 Mar 17;33:101101. doi: 10.1016/j.conctc.2023.101101. eCollection 2023 Jun.

Abstract

BACKGROUND

Statistical monitoring involves the review of prospective study data collected in participating sites to detect intra/inter patients and sites inconsistencies. We report methods and results of statistical monitoring in a phase IV clinical trial.

METHOD

PRO-MSACTIVE is a study evaluating ocrelizumab in active relapsing multiple sclerosis (RMS) patients in France. Specific statistical methods (volcano plots, mahalanobis distance, funnel plot …) have been applied to a SDTM database to detect potential issues. R-Shiny application was developed to generate an interactive web application in order to ease site and/or patients identification during statistical data review meetings.

RESULTS

The PRO-MSACTIVE study enrolled 422 patients in 46 centers between July 2018 and August 2019. Three data review meetings were held between April and October 2019 and 14 standard and planned tests were run on study data, with a total of 15 (32.6%) sites identified as needing review or investigation. Overall 36 findings were identified during the meetings: duplicate records, outliers, inconsistent delays between dates.

CONCLUSION

Statistical monitoring is useful to identify unusual or clustered data patterns that might be revealing issues that could impact the data integrity and/or may potentially impact patients' safety. With anticipated and appropriate interactive data visualization, early signals can easily be identified or reviewed by the study team and appropriate actions be set up and assigned to the most appropriate function for a close follow-up and resolution. Interactive statistical monitoring is time consuming to initiate using R-Shiny, but is time saving after the 1st data review meeting (DRV).(ClinicalTrials.gov identifier: NCT03589105; EudraCT identifier: 2018-000780-91).

摘要

背景

统计监测涉及对参与研究站点收集的前瞻性研究数据进行审查,以发现患者内部/之间以及站点之间的不一致情况。我们报告了一项IV期临床试验中的统计监测方法和结果。

方法

PRO-MSACTIVE研究旨在评估奥瑞珠单抗在法国活动性复发型多发性硬化症(RMS)患者中的疗效。已将特定的统计方法(火山图、马氏距离、漏斗图……)应用于SDTM数据库以检测潜在问题。开发了R-Shiny应用程序以生成交互式网络应用程序,以便在统计数据审查会议期间便于识别站点和/或患者。

结果

PRO-MSACTIVE研究在2018年7月至2019年8月期间,在46个中心招募了422名患者。2019年4月至10月期间举行了三次数据审查会议,并对研究数据进行了14次标准和计划测试,共确定有15个(32.6%)站点需要审查或调查。会议期间共发现36个问题:重复记录、异常值、日期之间的延迟不一致。

结论

统计监测有助于识别异常或聚集的数据模式,这些模式可能揭示可能影响数据完整性和/或可能影响患者安全的问题。通过预期且适当的交互式数据可视化,研究团队可以轻松识别或审查早期信号,并制定适当的行动并分配给最合适的职能部门进行密切跟踪和解决。使用R-Shiny启动交互式统计监测很耗时,但在第一次数据审查会议(DRV)之后则节省时间。(ClinicalTrials.gov标识符:NCT03589105;EudraCT标识符:2018-000780-91)

相似文献

本文引用的文献

2
Understanding and interpreting funnel plots for the clinician.临床医生对漏斗图的理解与解读
Br J Hosp Med (Lond). 2018 Oct 2;79(10):578-583. doi: 10.12968/hmed.2018.79.10.578.
4
Epidemiology of multiple sclerosis.多发性硬化症的流行病学
Rev Neurol (Paris). 2016 Jan;172(1):3-13. doi: 10.1016/j.neurol.2015.10.006. Epub 2015 Dec 21.
7
Volcano plots in analyzing differential expressions with mRNA microarrays.用于分析mRNA微阵列差异表达的火山图。
J Bioinform Comput Biol. 2012 Dec;10(6):1231003. doi: 10.1142/S0219720012310038. Epub 2012 Oct 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验