Suppr超能文献

使用机器学习预测慢性咳嗽患者的持续性慢性咳嗽

Prediction of persistent chronic cough in patients with chronic cough using machine learning.

作者信息

Chen Wansu, Schatz Michael, Zhou Yichen, Xie Fagen, Bali Vishal, Das Amar, Schelfhout Jonathan, Stern Julie A, Zeiger Robert S

机构信息

Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA.

Department of Allergy, Kaiser Permanente Southern California, San Diego, CA, USA.

出版信息

ERJ Open Res. 2023 Mar 27;9(2). doi: 10.1183/23120541.00471-2022. eCollection 2023 Mar.

Abstract

INTRODUCTION

The aim of this study was to develop and validate prediction models for risk of persistent chronic cough (PCC) in patients with chronic cough (CC). This was a retrospective cohort study.

METHODS

Two retrospective cohorts of patients 18-85 years of age were identified for years 2011-2016: a specialist cohort which included CC patients diagnosed by specialists, and an event cohort which comprised CC patients identified by at least three cough events. A cough event could be a cough diagnosis, dispensing of cough medication or any indication of cough in clinical notes. Model training and validation were conducted using two machine-learning approaches and 400+ features. Sensitivity analyses were also conducted. PCC was defined as a CC diagnosis or any two (specialist cohort) or three (event cohort) cough events in year 2 and again in year 3 after the index date.

RESULTS

8581 and 52 010 patients met the eligibility criteria for the specialist and event cohorts (mean age 60.0 and 55.5 years), respectively. 38.2% and 12.4% of patients in the specialist and event cohorts, respectively, developed PCC. The utilisation-based models were mainly based on baseline healthcare utilisations associated with CC or respiratory diseases, while the diagnosis-based models incorporated traditional parameters including age, asthma, pulmonary fibrosis, obstructive pulmonary disease, gastro-oesophageal reflux, hypertension and bronchiectasis. All final models were parsimonious (five to seven predictors) and moderately accurate (area under the curve: 0.74-0.76 for utilisation-based models and 0.71 for diagnosis-based models).

CONCLUSIONS

The application of our risk prediction models may be used to identify high-risk PCC patients at any stage of the clinical testing/evaluation to facilitate decision making.

摘要

引言

本研究旨在开发并验证慢性咳嗽(CC)患者持续性慢性咳嗽(PCC)风险的预测模型。这是一项回顾性队列研究。

方法

确定了2011年至2016年期间18至85岁患者的两个回顾性队列:一个专科队列,包括由专科医生诊断的CC患者;一个事件队列,由至少有三次咳嗽事件的CC患者组成。咳嗽事件可以是咳嗽诊断、止咳药物配药或临床记录中任何咳嗽迹象。使用两种机器学习方法和400多个特征进行模型训练和验证。还进行了敏感性分析。PCC被定义为在索引日期后第2年以及第3年再次出现的CC诊断或任何两次(专科队列)或三次(事件队列)咳嗽事件。

结果

分别有8581名和52010名患者符合专科队列和事件队列的纳入标准(平均年龄分别为60.0岁和55.5岁)。专科队列和事件队列中分别有38.2%和12.4%的患者发生了PCC。基于利用情况的模型主要基于与CC或呼吸系统疾病相关的基线医疗利用情况,而基于诊断的模型纳入了包括年龄、哮喘、肺纤维化、阻塞性肺疾病、胃食管反流、高血压和支气管扩张等传统参数。所有最终模型都很简洁(有五到七个预测因子)且准确性中等(曲线下面积:基于利用情况的模型为0.74 - 0.76,基于诊断的模型为0.71)。

结论

我们的风险预测模型的应用可用于在临床测试/评估的任何阶段识别高危PCC患者,以促进决策制定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f34/10052506/8a92aa317de0/00471-2022.01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验