Suppr超能文献

CVSARRP:一个预测新冠疫苗接种后10855种疾病出现不良至严重不良反应风险的框架。

CVSARRP: A framework to predict the risk of adverse to severe adverse reactions for 10855 diseases after COVID-19 vaccination.

作者信息

Jin Jiahuan, Li Jie

机构信息

Research Center of Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang Province, China.

出版信息

Heliyon. 2023 Apr;9(4):e14828. doi: 10.1016/j.heliyon.2023.e14828. Epub 2023 Mar 27.

Abstract

COVID-19 vaccines greatly reduce the risk of infection with SARS-CoV-2. However, some people have adverse reactions after vaccination, and these can sometimes be severe. Gender, age, vaccines, and especially certain diseases histories are related to severe adverse reactions following COVID-19 vaccination. However, there are thousands of diseases and only some are known to be related to these severe adverse reactions. The risk of severe adverse reactions with other diseases remains unknown. Therefore, there is a need for predictive studies to provide improved medical care and minimize risk. Herein, we analyzed the statistical results of existing COVID-19 vaccine adverse reaction data and proposed a COVID-19 vaccine severe adverse reaction risk prediction method, named CVSARRP. The performance of the CVSARRP method was tested using the leave-one-out cross-validation approach. The correlation coefficient between the predicted and real risk is greater than 0.86. The CVSARRP method predicts the risk from adverse reactions to severe adverse reactions after COVID-19 vaccination for 10855 diseases. People with certain diseases, such as central nervous system diseases, heart diseases, urinary system disease, anemia, cancer, and respiratory tract disease, among others, may potentially have increased of severe adverse reactions following vaccination against COVID-19 and experiencing adverse events.

摘要

新冠病毒疫苗能大幅降低感染严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的风险。然而,有些人在接种疫苗后会出现不良反应,有时这些反应会很严重。性别、年龄、疫苗,尤其是某些疾病史与新冠病毒疫苗接种后的严重不良反应有关。然而,疾病有成千上万种,只有一部分已知与这些严重不良反应有关。其他疾病引发严重不良反应的风险仍然未知。因此,需要进行预测性研究,以提供更好的医疗护理并将风险降至最低。在此,我们分析了现有新冠病毒疫苗不良反应数据的统计结果,并提出了一种新冠病毒疫苗严重不良反应风险预测方法,名为CVSARRP。使用留一法交叉验证方法对CVSARRP方法的性能进行了测试。预测风险与实际风险之间的相关系数大于0.86。CVSARRP方法针对10855种疾病预测了新冠病毒疫苗接种后从不良反应到严重不良反应的风险。患有某些疾病的人,如中枢神经系统疾病、心脏病、泌尿系统疾病、贫血、癌症和呼吸道疾病等,在接种新冠病毒疫苗后可能会有更高的严重不良反应风险并经历不良事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff16/10070089/d3a92e0cd0bb/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验