Ren Zhixin, Zhao Bo, Xie Jing
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Small. 2023 Aug;19(33):e2301818. doi: 10.1002/smll.202301818. Epub 2023 Apr 3.
Electrochemical conversion of carbon dioxide (CO ) into value-added products is promising to alleviate greenhouse gas emission and energy demands. Metalloporphyrin-based covalent organic frameworks (MN -Por-COFs) provide a platform for rational design of electrocatalyst for CO reduction reaction (CO RR). Herein, through systematic quantum-chemical studies, the N-confused metallo-Por-COFs are reported as novel catalysts for CO RR. For MN -Por-COFs, among the ten 3d metals, M = Co/Cr stands out in catalyzing CO RR to CO or HCOOH; hence, N-confused Por-COFs with Co/CrN C and Co/CrN C centers are designed. Calculations indicate CoN C -Por-COFs exhibit lower limiting potential (-0.76 and -0.60 V) for CO -to-CO reduction than its parent CoN -Por-COFs (-0.89 V) and make it feasible to yield deep-reduction degree C products CH OH and CH . Electronic structure analysis reveals that substituting CoN to CoN C /CoN C increases the electron density on Co-atom and raises the d-band center, thus stabilizing the key intermediates of the potential determining step and lowering the limiting potential. For similar reason, changing the core from CrN to CrN C /CrN C lowers the limiting potential for CO -to-HCOOH reduction. This work predicts N-confused Co/CrN C -Por-COFs to be high-performance CO RR catalyst candidates. Inspiringly, as a proof-of-concept study, it provides an alternative strategy for coordination regulation and theoretical guidelines for rational design of catalysts.
将二氧化碳(CO₂)电化学转化为高附加值产品有望缓解温室气体排放和能源需求。基于金属卟啉的共价有机框架(MN-Por-COFs)为合理设计用于CO₂还原反应(CO₂RR)的电催化剂提供了一个平台。在此,通过系统的量子化学研究,报道了N-杂化金属-卟啉-共价有机框架作为CO₂RR的新型催化剂。对于MN-Por-COFs,在十种3d金属中,M = Co/Cr在催化CO₂RR生成CO或HCOOH方面表现突出;因此,设计了具有Co/CrN₄和Co/CrN₅中心的N-杂化卟啉-共价有机框架。计算表明,CoN₄-Por-COFs在CO₂到CO还原方面的极限电位(-0.76和-0.60 V)低于其母体CoN₄-Por-COFs(-0.89 V),并且使得生成深度还原程度的C产物CH₃OH和CH₄成为可能。电子结构分析表明,用CoN₄C/CoN₅C取代CoN₄会增加Co原子上的电子密度并提高d带中心,从而稳定电位决定步骤的关键中间体并降低极限电位。出于类似原因,将核心从CrN₄变为CrN₄C/CrN₅C会降低CO₂到HCOOH还原的极限电位。这项工作预测N-杂化Co/CrN₄C/CrN₅C-Por-COFs是高性能CO₂RR催化剂候选物。令人鼓舞的是,作为一项概念验证研究,它为配位调控提供了一种替代策略,并为催化剂的合理设计提供了理论指导。