Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland.
Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland.
J Med Chem. 2023 Apr 13;66(7):4588-4602. doi: 10.1021/acs.jmedchem.2c01448. Epub 2023 Apr 3.
Protein kinase C (PKC) modulators hold therapeutic potential for various diseases, including cancer, heart failure, and Alzheimer's disease. Targeting the C1 domain of PKC represents a promising strategy; the available protein structures warrant the design of PKC-targeted ligands via a structure-based approach. However, the PKC C1 domain penetrates the lipid membrane during binding, complicating the design of drug candidates. The standard docking-scoring approach for PKC lacks information regarding the dynamics and the membrane environment. Molecular dynamics (MD) simulations with PKC, ligands, and membranes have been used to address these shortcomings. Previously, we observed that less computationally intensive simulations of just ligand-membrane interactions may help elucidate C1 domain-binding prospects. Here, we present the design, synthesis, and biological evaluation of new pyridine-based PKC agonists implementing an enhanced workflow with ligand-membrane MD simulations. This workflow holds promise to expand the approach in drug design for ligands targeted to weakly membrane-associated proteins.
蛋白激酶 C(PKC)调节剂在治疗各种疾病方面具有潜力,包括癌症、心力衰竭和阿尔茨海默病。靶向 PKC 的 C1 结构域是一种很有前途的策略;现有的蛋白质结构允许通过基于结构的方法设计针对 PKC 的配体。然而,PKC 的 C1 结构域在结合过程中穿透脂膜,这使得候选药物的设计变得复杂。PKC 的标准对接评分方法缺乏有关动力学和膜环境的信息。已经使用 PKC、配体和膜的分子动力学(MD)模拟来解决这些缺点。以前,我们观察到,仅针对配体-膜相互作用的计算量较小的模拟可能有助于阐明 C1 结构域结合的前景。在这里,我们提出了新的基于吡啶的 PKC 激动剂的设计、合成和生物学评估,该设计采用了具有配体-膜 MD 模拟的增强工作流程。该工作流程有望在针对弱膜相关蛋白的配体的药物设计中扩展该方法。