Suppr超能文献

确定生态系统状态突然变化的真正驱动因素,重点关注时滞:极端降水可以决定浅水湖泊的水质。

Identifying the true drivers of abrupt changes in ecosystem state with a focus on time lags: Extreme precipitation can determine water quality in shallow lakes.

机构信息

Regional Environmental Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.

Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.

出版信息

Sci Total Environ. 2023 Jul 10;881:163097. doi: 10.1016/j.scitotenv.2023.163097. Epub 2023 Apr 1.

Abstract

A better understanding of abrupt ecosystem changes is needed to improve prediction of future ecosystem states under climate change. Chronological analysis based on long-term monitoring data is an effective way to estimate the frequency and magnitude of abrupt ecosystem changes. In this study, we used abrupt-change detection to differentiate changes of algal community composition in two Japanese lakes and to identify the causes of long-term ecological transitions. Additionally, we focused on finding statistically significant relationships between abrupt changes to aid with factor analysis. To estimate the strengths of driver-response relationships underlying abrupt algal transitions, the timing of the algal transitions was compared to that of abrupt changes in climate and basin characteristics to identify any synchronicities between them. The timing of abrupt algal changes in the two study lakes corresponded most closely to that of heavy runoff events during the past 30-40 years. This strongly suggests that changes in the frequency of extreme events (e.g., heavy rain, prolonged drought) have a greater effect on lake chemistry and community composition than do shifts in the means of climate and basin factors. Our analysis of synchronicity (with a focus on time lags) could provide an easy method to identify better adaptative strategies for future climate change.

摘要

为了提高在气候变化下预测未来生态系统状态的能力,我们需要更好地了解生态系统的突然变化。基于长期监测数据的年代分析是估计生态系统突然变化频率和幅度的有效方法。在这项研究中,我们使用突然变化检测来区分两个日本湖泊中藻类群落组成的变化,并确定长期生态转变的原因。此外,我们还专注于寻找与突然变化相关的统计学上显著的关系,以辅助进行因子分析。为了估计突发藻类转变的驱动-响应关系的强度,将藻类转变的时间与气候和流域特征的突然变化进行比较,以确定它们之间是否存在同步性。两个研究湖泊中藻类的突然变化时间与过去 30-40 年来的大径流事件最为吻合。这强烈表明,极端事件(如暴雨、长时间干旱)频率的变化对湖泊化学性质和群落组成的影响大于气候和流域因素平均值的变化。我们对同步性(重点关注时滞)的分析可以提供一种简单的方法来识别适应未来气候变化的更好策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验