Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia.
The Wicking Dementia Centre, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia.
Prog Neurobiol. 2023 Jul;226:102449. doi: 10.1016/j.pneurobio.2023.102449. Epub 2023 Apr 1.
Alterations in upper motor neuron excitability are one of the earliest phenomena clinically detected in ALS, and in 97 % of cases, the RNA/DNA binding protein, TDP-43, is mislocalised in upper and lower motor neurons. While these are two major pathological hallmarks in disease, our understanding of where disease pathology begins, and how it spreads through the corticomotor system, is incomplete. This project used a model where mislocalised TDP-43 was expressed in the motor cortex, to determine if localised cortical pathology could result in widespread corticomotor system degeneration. Mislocalised TDP-43 caused layer V excitatory neurons in the motor cortex to become hyperexcitable after 20 days of expression. Following cortical hyperexcitability, a spread of pathogenic changes through the corticomotor system was observed. By 30 days expression, there was a significant decrease in lower motor neuron number in the lumbar spinal cord. However, cell loss occurred selectively, with a significant loss in lumbar regions 1-3, and not lumbar regions 4-6. This regional vulnerability was associated with alterations in pre-synaptic excitatory and inhibitory proteins. Excitatory inputs (VGluT2) were increased in all lumbar regions, while inhibitory inputs (GAD65/67) were increased in lumbar regions 4-6 only. This data indicates that mislocalised TDP-43 in upper motor neurons can cause lower motor neuron degeneration. Furthermore, cortical pathology increased excitatory inputs to the spinal cord, to which local circuitry compensated with an upregulation of inhibition. These findings reveal how TDP-43 mediated pathology may spread through corticofugal tracts in ALS and identify a potential pathway for therapeutic intervention.
上运动神经元兴奋性的改变是 ALS 临床最早检测到的现象之一,在 97%的病例中,RNA/DNA 结合蛋白 TDP-43 在上、下运动神经元中定位异常。虽然这是疾病的两个主要病理标志,但我们对疾病病理学开始的位置以及它如何通过皮质运动系统传播的理解还不完整。本项目使用了一种在运动皮层中表达定位异常 TDP-43 的模型,以确定局部皮层病理学是否会导致广泛的皮质运动系统退化。表达 20 天后,定位异常的 TDP-43 导致运动皮层中 V 层兴奋性神经元过度兴奋。皮质兴奋性增加后,观察到致病性变化通过皮质运动系统传播。在表达 30 天时,腰脊髓中的下运动神经元数量显著减少。然而,细胞丢失是选择性的,腰 1-3 区有显著丢失,而腰 4-6 区没有。这种区域易损性与兴奋性和抑制性前突蛋白的改变有关。所有腰区的兴奋性输入(VGluT2)增加,而仅在腰 4-6 区的抑制性输入(GAD65/67)增加。这些数据表明,上运动神经元中定位异常的 TDP-43 可导致下运动神经元退化。此外,皮层病理学增加了对脊髓的兴奋性输入,局部回路通过上调抑制作用来补偿。这些发现揭示了 TDP-43 介导的病理学如何在 ALS 中通过皮质传出束传播,并确定了治疗干预的潜在途径。