Sorbonne Université, CNRS, LIP6, 4 Place Jussieu, Paris, F-75005, France.
Institute for Quantum Information and Matter, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA.
Nat Commun. 2023 Apr 3;14(1):1855. doi: 10.1038/s41467-023-37566-x.
As in modern communication networks, the security of quantum networks will rely on complex cryptographic tasks that are based on a handful of fundamental primitives. Weak coin flipping (WCF) is a significant such primitive which allows two mistrustful parties to agree on a random bit while they favor opposite outcomes. Remarkably, perfect information-theoretic security can be achieved in principle for quantum WCF. Here, we overcome conceptual and practical issues that have prevented the experimental demonstration of this primitive to date, and demonstrate how quantum resources can provide cheat sensitivity, whereby each party can detect a cheating opponent, and an honest party is never sanctioned. Such a property is not known to be classically achievable with information-theoretic security. Our experiment implements a refined, loss-tolerant version of a recently proposed theoretical protocol and exploits heralded single photons generated by spontaneous parametric down conversion, a carefully optimized linear optical interferometer including beam splitters with variable reflectivities and a fast optical switch for the verification step. High values of our protocol benchmarks are maintained for attenuation corresponding to several kilometers of telecom optical fiber.
与现代通信网络一样,量子网络的安全性将依赖于基于少数基本原语的复杂密码任务。弱硬币翻转 (WCF) 是一个重要的基本原语,它允许两个不信任的方在赞成相反结果的情况下就随机位达成一致。值得注意的是,量子 WCF 原则上可以实现完美的信息论安全性。在这里,我们克服了迄今为止阻止该原语实验演示的概念和实践问题,并展示了量子资源如何提供欺骗敏感性,从而使每个方都可以检测到欺骗对手,而诚实的方永远不会受到制裁。这种性质在经典意义上是无法通过信息论安全性实现的。我们的实验实现了最近提出的理论协议的一种改进的、容忍损耗的版本,并利用自发参量下转换产生的被标记的单光子,该协议包括带有可变量反射率的分束器和精心优化的线性光学干涉仪,以及用于验证步骤的快速光开关。在对应于数公里电信光纤的衰减下,我们协议的基准值保持在较高水平。