Clivati Cecilia, Meda Alice, Donadello Simone, Virzì Salvatore, Genovese Marco, Levi Filippo, Mura Alberto, Pittaluga Mirko, Yuan Zhiliang, Shields Andrew J, Lucamarini Marco, Degiovanni Ivo Pietro, Calonico Davide
INRIM, strada delle cacce 91, 10135, Torino, Italy.
INFN, sezione di Torino, via P. Giuria 1, 10125, Torino, Italy.
Nat Commun. 2022 Jan 10;13(1):157. doi: 10.1038/s41467-021-27808-1.
Quantum mechanics allows distribution of intrinsically secure encryption keys by optical means. Twin-field quantum key distribution is one of the most promising techniques for its implementation on long-distance fiber networks, but requires stabilizing the optical length of the communication channels between parties. In proof-of-principle experiments based on spooled fibers, this was achieved by interleaving the quantum communication with periodical stabilization frames. In this approach, longer duty cycles for the key streaming come at the cost of a looser control of channel length, and a successful key-transfer using this technique in real world remains a significant challenge. Using interferometry techniques derived from frequency metrology, we develop a solution for the simultaneous key streaming and channel length control, and demonstrate it on a 206 km field-deployed fiber with 65 dB loss. Our technique reduces the quantum-bit-error-rate contributed by channel length variations to <1%, representing an effective solution for real-world quantum communications.
量子力学允许通过光学手段分发本质安全的加密密钥。双场量子密钥分发是在长距离光纤网络上实现该技术最有前景的技术之一,但需要稳定各方之间通信信道的光学长度。在基于盘绕光纤的原理验证实验中,这是通过将量子通信与周期性稳定帧交织来实现的。在这种方法中,密钥流的较长占空比是以对信道长度的较宽松控制为代价的,并且在现实世界中使用该技术成功进行密钥传输仍然是一项重大挑战。利用源自频率计量学的干涉测量技术,我们开发了一种用于同时进行密钥流传输和信道长度控制的解决方案,并在一条损耗为65dB、现场部署的206公里光纤上进行了演示。我们的技术将信道长度变化导致的量子误码率降低到<1%,为现实世界的量子通信提供了一种有效的解决方案。