Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany.
Rev Sci Instrum. 2023 Mar 1;94(3):033704. doi: 10.1063/5.0131532.
Cryogenic scanning tunneling microscopy and spectroscopy (STM/STS) performed in a high vector magnetic field provide unique possibilities for imaging surface magnetic structures and anisotropic superconductivity and exploring spin physics in quantum materials with atomic precision. Here, we describe the design, construction, and performance of a low-temperature, ultra-high-vacuum (UHV) spectroscopic-imaging STM equipped with a vector magnet capable of applying a field of up to 3 T in any direction with respect to the sample surface. The STM head is housed in a fully bakeable UHV compatible cryogenic insert and is operational over variable temperatures ranging from ∼300 down to 1.5 K. The insert can be easily upgraded using our home-designed He refrigerator. In addition to layered compounds, which can be cleaved at a temperature of either ∼300, ∼77, or ∼4.2 K to expose an atomically flat surface, thin films can also be studied by directly transferring using a UHV suitcase from our oxide thin-film laboratory. Samples can be treated further with a heater and a liquid helium/nitrogen cooling stage on a three-axis manipulator. The STM tips can be treated in vacuo by e-beam bombardment and ion sputtering. We demonstrate the successful operation of the STM with varying the magnetic field direction. Our facility provides a way to study materials in which magnetic anisotropy is a key factor in determining the electronic properties such as in topological semimetals and superconductors.
低温扫描隧道显微镜和光谱学(STM/STS)在高矢量磁场中进行,为成像表面磁结构和各向异性超导以及用原子精度探索量子材料中的自旋物理提供了独特的可能性。在这里,我们描述了一种低温、超高真空(UHV)光谱成像 STM 的设计、构建和性能,该 STM 配备了一个矢量磁铁,能够在相对于样品表面的任何方向施加高达 3 T 的磁场。STM 头安装在一个完全可烘烤的 UHV 兼容低温插件中,可在从 300 K 到 1.5 K 的可变温度下运行。该插件可以使用我们自主设计的氦制冷机轻松升级。除了可以在 300 K、77 K 或 4.2 K 的温度下进行层状化合物的剥离以暴露原子级平坦的表面之外,还可以通过使用来自氧化物薄膜实验室的 UHV 手提箱直接转移来研究薄膜。样品可以进一步用加热器和三轴操纵器上的液氦/液氮冷却台进行处理。STM 针尖可以通过电子束轰击和离子溅射在真空中进行处理。我们通过改变磁场方向证明了 STM 的成功操作。我们的设施为研究磁性各向异性是决定电子性质的关键因素的材料提供了一种方法,例如拓扑半金属和超导体。