Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain.
PeerJ. 2023 Mar 29;11:e15095. doi: 10.7717/peerj.15095. eCollection 2023.
The rehabilitation of children with motor disorders is mainly focused on physical interventions. Numerous studies have demonstrated the benefits of upper function using robotic exoskeletons. However, there is still a gap between research and clinical practice, owing to the cost and complexity of these devices. This study presents a proof of concept of a 3D-printed exoskeleton for the upper limb, following a design that replicates the main characteristics of other effective exoskeletons described in the literature. 3D printing enables rapid prototyping, low cost, and easy adjustment to the patient anthropometry. The 3D-printed exoskeleton, called POWERUP, assists the user's movement by reducing the effect of gravity, thereby allowing them to perform upper limb exercises. To validate the design, this study performed an electromyography-based assessment of the assistive performance of POWERUP, focusing on the muscular response of both the biceps and triceps during elbow flexion-extension movements in 11 healthy children. The Muscle Activity Distribution (MAD) is the proposed metric for the assessment. The results show that (1) the exoskeleton correctly assists elbow flexion, and (2) the proposed metric easily identifies the exoskeleton configuration: statistically significant differences (-value = 2.26 ⋅ 10 < 0.001) and a large effect size (Cohen's d = 3.78 > 0.8) in the mean MAD value were identified for both the biceps and triceps when comparing the transparent mode (no assistance provided) with the assistive mode (anti-gravity effect). Therefore, this metric was proposed as a method for assessing the assistive performance of exoskeletons. Further research is required to determine its usefulness for both the evaluation of selective motor control (SMC) and the impact of robot-assisted therapies.
儿童运动障碍的康复主要集中在身体干预上。许多研究已经证明了使用机器人外骨骼对上肢功能的好处。然而,由于这些设备的成本和复杂性,研究和临床实践之间仍然存在差距。本研究提出了一种基于 3D 打印的上肢外骨骼的概念验证,该外骨骼的设计复制了文献中描述的其他有效外骨骼的主要特征。3D 打印可以实现快速原型制作、低成本和易于调整患者人体测量学。这种 3D 打印的外骨骼称为 POWERUP,通过减少重力的影响来帮助用户运动,从而使他们能够进行上肢运动。为了验证设计,本研究对 POWERUP 的辅助性能进行了基于肌电图的评估,重点评估了 11 名健康儿童在肘部屈伸运动中肱二头肌和肱三头肌的肌肉反应。提出的评估指标是肌肉活动分布(MAD)。结果表明:(1)外骨骼正确地辅助了肘部弯曲,(2)所提出的指标很容易识别外骨骼的配置:在透明模式(无辅助)和辅助模式(抗重力效果)下,肱二头肌和肱三头肌的 MAD 值的均值差异具有统计学意义(-值=2.26 ⋅ 10 < 0.001),且效果量(Cohen's d=3.78>0.8)较大。因此,该指标被提议作为评估外骨骼辅助性能的一种方法。需要进一步的研究来确定其在选择性运动控制(SMC)评估和机器人辅助治疗的影响方面的有用性。