Suppr超能文献

氯化窄带隙聚合物抑制非辐射复合能量损失,使基于苝二亚胺的有机太阳能电池效率超过10%。

Chlorinated Narrow Bandgap Polymer Suppresses Non-Radiative Recombination Energy Loss Enabling Perylene Diimides-Based Organic Solar Cells Exceeding 10% Efficiency.

作者信息

Gao Xiang, Tong Xinzhu, Xu Meichen, Zhang Linhua, Wang Yinuo, Liu Zhihao, Yang Lvpeng, Gao Jianhong, Shao Ming, Liu Zhitian

机构信息

Institute of Materials for Optoelectronics and New Energy, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.

出版信息

Small. 2023 Jul;19(29):e2208217. doi: 10.1002/smll.202208217. Epub 2023 Apr 4.

Abstract

The scarcity of narrow bandgap donor polymers matched with perylene diimides (PDI)-based nonfullerene acceptors (NFAs) hinders improvement of the power conversion efficiency (PCE) value of organic solar cells (OSCs). Here, it is reported that a narrow bandgap donor polymer PDX, the chlorinated derivative of the famous polymer donor PTB7-Th, blended with PDI-based NFA boosts the PCE value exceeding 10%. The electroluminescent quantum efficiency of PDX-based OSCs is two orders of magnitude higher than that of PTB7-Th-based OSCs;therefore, the nonradiative energy loss is 0.103 eV lower. This is the highest PCE value for OSCs with the lowest energy loss using the blend of PTB7-Th derivatives and PDI-based NFAs as the active layer. Besides, PDX-based devices showed larger phase separation, faster charge mobilities, higher exciton dissociation probability, suppressed charge recombination, elevated charge transfer state, and decreased energetic disorder compared with the PTB7-Th-based OSCs. All these factors contribute to the simultaneously improved short circuit current density, open circuit voltage, and fill factor, thus significantly improving PCE. These results prove that chlorinated conjugated side thienyl groups can efficiently suppress the non-radiative energy loss and highlight the importance of fine-modifying or developing novel narrow bandgap polymers to further elevate the PCE value of PDI-based OSCs.

摘要

窄带隙供体聚合物与基于苝二亚胺(PDI)的非富勒烯受体(NFA)的稀缺性阻碍了有机太阳能电池(OSC)功率转换效率(PCE)值的提高。在此,据报道,著名的聚合物供体PTB7-Th的氯化衍生物——窄带隙供体聚合物PDX,与基于PDI的NFA混合后,PCE值超过了10%。基于PDX的OSC的电致发光量子效率比基于PTB7-Th的OSC高两个数量级;因此,非辐射能量损失降低了0.103 eV。这是以PTB7-Th衍生物和基于PDI的NFA的混合物作为活性层的OSC的最高PCE值,且能量损失最低。此外,与基于PTB7-Th的OSC相比,基于PDX的器件表现出更大的相分离、更快的电荷迁移率、更高的激子解离概率、抑制的电荷复合、升高的电荷转移态以及降低的能量无序度。所有这些因素共同导致短路电流密度、开路电压和填充因子同时提高,从而显著提高了PCE。这些结果证明,氯化共轭侧噻吩基可以有效地抑制非辐射能量损失,并突出了精细修饰或开发新型窄带隙聚合物以进一步提高基于PDI的OSC的PCE值的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验