Suppr超能文献

实现高电流密度水电解的途径:从材料角度到系统配置

Pathways towards Achieving High Current Density Water Electrolysis: from Material Perspective to System Configuration.

作者信息

Domalanta Marcel Roy, Bamba Jaira Neibel, Matienzo Dj Donn, Del Rosario-Paraggua Julie Anne, Ocon Joey

机构信息

Laboratory of Electrochemical Engineering (LEE), Department of Chemical Engineering, University of the Philippines Diliman, Quezon City, 1101, Philippines.

Energy Engineering Program, National Graduate School of Engineering, College of Engineering, University of the Philippines Diliman, Quezon City, 1101, Philippines.

出版信息

ChemSusChem. 2023 Jul 7;16(13):e202300310. doi: 10.1002/cssc.202300310. Epub 2023 Jun 20.

Abstract

Hydrogen is a clean, flexible, powerful energy vector that can be leveraged as a promising alternative to fossil fuels. Additionally, green hydrogen production has been recognized as one of the most prevalent solutions to decarbonize the energy system. Water electrolysis studies have increased throughout the decade as higher industrial interest comes into play. The catalyst, system design, and configuration act in a congenial manner to deliver high-performing water electrolysis. Despite performance targets peaking at high current densities, the current status of water electrolyzer technologies would require more research efforts to achieve such goals. This work presents a comprehensive review of how catalysts and electrolyzer designs can be enhanced to attain high current density water electrolysis. Modification strategies of catalysts, advances in characterization and modelling, and optimizing system designs are highlighted. Furthermore, this paper aims to elucidate the future research direction of water electrolysis to bridge the laboratory-to-industry gap.

摘要

氢气是一种清洁、灵活且强大的能量载体,有望成为化石燃料的替代能源。此外,绿色制氢已被视为能源系统脱碳的最普遍解决方案之一。随着工业兴趣的提高,近十年来水电解研究不断增加。催化剂、系统设计和配置协同作用,以实现高性能的水电解。尽管在高电流密度下性能目标达到峰值,但水电解槽技术的当前状态仍需要更多研究工作来实现这些目标。本文全面综述了如何增强催化剂和电解槽设计以实现高电流密度水电解。重点介绍了催化剂的改性策略、表征和建模的进展以及优化系统设计。此外,本文旨在阐明水电解的未来研究方向,以弥合实验室与工业之间的差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验