Liu Kecheng, Zhang Hui, Zhang Ya, Sun Changyin
IEEE Trans Cybern. 2023 Nov;53(11):7115-7125. doi: 10.1109/TCYB.2022.3225236. Epub 2023 Oct 17.
This article studies the detection of discontinuous false data-injection (FDI) attacks on cyber-physical systems (CPSs). Considering the unknown stochastic properties of the process noise and measurement noise, deep reinforcement learning is applied to designing an FDI attack detector. First, the discontinuous attack detection problem is modeled as a partially observable Markov decision process (POMDP) and a neural network is used to explore the POMDP. In the network, sliding observation windows which are composed of the offline fragment historical data are used as the input. An approach to designing the reward in POMDP is provided to ensure the precision of the detection when there are even some state recognition errors. Second, sufficient conditions on attack frequency and duration to guarantee the applicability of the detector and the expected estimation performance are further given. Finally, simulation examples illustrate the effectiveness of the attack detector.
本文研究了对信息物理系统(CPS)的非连续虚假数据注入(FDI)攻击的检测。考虑到过程噪声和测量噪声的未知随机特性,将深度强化学习应用于设计一个FDI攻击检测器。首先,将非连续攻击检测问题建模为部分可观测马尔可夫决策过程(POMDP),并使用神经网络来探索该POMDP。在网络中,由离线片段历史数据组成的滑动观测窗口被用作输入。提供了一种在POMDP中设计奖励的方法,以确保即使存在一些状态识别错误时检测的精度。其次,进一步给出了关于攻击频率和持续时间的充分条件,以保证检测器的适用性和预期的估计性能。最后,仿真示例说明了攻击检测器的有效性。