Suppr超能文献

连续条件生成对抗网络:新的经验损失和标签输入机制。

Continuous Conditional Generative Adversarial Networks: Novel Empirical Losses and Label Input Mechanisms.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Jul;45(7):8143-8158. doi: 10.1109/TPAMI.2022.3228915. Epub 2023 Jun 5.

Abstract

This article focuses on conditional generative modeling (CGM) for image data with continuous, scalar conditions (termed regression labels). We propose the first model for this task which is called continuous conditional generative adversarial network (CcGAN). Existing conditional GANs (cGANs) are mainly designed for categorical conditions (e.g., class labels). Conditioning on regression labels is mathematically distinct and raises two fundamental problems: (P1) since there may be very few (even zero) real images for some regression labels, minimizing existing empirical versions of cGAN losses (a.k.a. empirical cGAN losses) often fails in practice; and (P2) since regression labels are scalar and infinitely many, conventional label input mechanisms (e.g., combining a hidden map of the generator/discriminator with a one-hot encoded label) are not applicable. We solve these problems by: (S1) reformulating existing empirical cGAN losses to be appropriate for the continuous scenario; and (S2) proposing a naive label input (NLI) mechanism and an improved label input (ILI) mechanism to incorporate regression labels into the generator and the discriminator. The reformulation in (S1) leads to two novel empirical discriminator losses, termed the hard vicinal discriminator loss (HVDL) and the soft vicinal discriminator loss (SVDL) respectively, and a novel empirical generator loss. Hence, we propose four versions of CcGAN employing different proposed losses and label input mechanisms. The error bounds of the discriminator trained with HVDL and SVDL, respectively, are derived under mild assumptions. To evaluate the performance of CcGANs, two new benchmark datasets (RC-49 and Cell-200) are created. A novel evaluation metric (Sliding Fréchet Inception Distance) is also proposed to replace Intra-FID when Intra-FID is not applicable. Our extensive experiments on several benchmark datasets (i.e., RC-49, UTKFace, Cell-200, and Steering Angle with both low and high resolutions) support the following findings: the proposed CcGAN is able to generate diverse, high-quality samples from the image distribution conditional on a given regression label; and CcGAN substantially outperforms cGAN both visually and quantitatively.

摘要

这篇文章主要研究了具有连续标量条件(称为回归标签)的图像数据的条件生成式建模(CGM)。我们提出了第一个用于此任务的模型,称为连续条件生成式对抗网络(CcGAN)。现有的条件生成式对抗网络(cGANs)主要是为类别条件(例如,类别标签)设计的。条件回归标签在数学上是不同的,并提出了两个基本问题:(P1)由于某些回归标签可能很少(甚至为零)真实图像,因此在实践中最小化现有经验版本的 cGAN 损失(即经验 cGAN 损失)通常会失败;(P2)由于回归标签是标量且无穷多,因此传统的标签输入机制(例如,将生成器/判别器的隐藏映射与独热编码标签组合)不适用。我们通过以下方法解决了这些问题:(S1)将现有的经验 cGAN 损失重新表述为适用于连续情况的形式;(S2)提出了一种简单的标签输入(NLI)机制和一种改进的标签输入(ILI)机制,将回归标签纳入生成器和判别器中。(S1)中的重新表述导致了两个新的经验判别器损失,分别称为硬邻域判别器损失(HVDL)和软邻域判别器损失(SVDL),以及一个新的经验生成器损失。因此,我们提出了四种使用不同提出的损失和标签输入机制的 CcGAN 版本。在温和的假设下,分别推导了使用 HVDL 和 SVDL 训练的判别器的误差界。为了评估 CcGAN 的性能,创建了两个新的基准数据集(RC-49 和 Cell-200)。还提出了一种新的评估指标(滑动 Fréchet Inception 距离)来替代不可用时的 Intra-FID。我们在几个基准数据集(即 RC-49、UTKFace、Cell-200 和具有低分辨率和高分辨率的转向角)上进行了广泛的实验,支持以下发现:所提出的 CcGAN 能够从给定回归标签条件下的图像分布生成多样化、高质量的样本;并且 CcGAN 在视觉和定量上都大大优于 cGAN。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验