Suppr超能文献

傅里叶域鲁棒去噪分解与自适应块MRI重建

Fourier Domain Robust Denoising Decomposition and Adaptive Patch MRI Reconstruction.

作者信息

Tan Junpeng, Zhang Xin, Qing Chunmei, Xu Xiangmin

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7299-7311. doi: 10.1109/TNNLS.2022.3222394. Epub 2024 Jun 3.

Abstract

The sparsity of the Fourier transform domain has been applied to magnetic resonance imaging (MRI) reconstruction in k -space. Although unsupervised adaptive patch optimization methods have shown promise compared to data-driven-based supervised methods, the following challenges exist in MRI reconstruction: 1) in previous k -space MRI reconstruction tasks, MRI with noise interference in the acquisition process is rarely considered. 2) Differences in transform domains should be resolved to achieve the high-quality reconstruction of low undersampled MRI data. 3) Robust patch dictionary learning problems are usually nonconvex and NP-hard, and alternate minimization methods are often computationally expensive. In this article, we propose a method for Fourier domain robust denoising decomposition and adaptive patch MRI reconstruction (DDAPR). DDAPR is a two-step optimization method for MRI reconstruction in the presence of noise and low undersampled data. It includes the low-rank and sparse denoising reconstruction model (LSDRM) and the robust dictionary learning reconstruction model (RDLRM). In the first step, we propose LSDRM for different domains. For the optimization solution, the proximal gradient method is used to optimize LSDRM by singular value decomposition and soft threshold algorithms. In the second step, we propose RDLRM, which is an effective adaptive patch method by introducing a low-rank and sparse penalty adaptive patch dictionary and using a sparse rank-one matrix to approximate the undersampled data. Then, the block coordinate descent (BCD) method is used to optimize the variables. The BCD optimization process involves valid closed-form solutions. Extensive numerical experiments show that the proposed method has a better performance than previous methods in image reconstruction based on compressed sensing or deep learning.

摘要

傅里叶变换域的稀疏性已应用于k空间中的磁共振成像(MRI)重建。尽管与基于数据驱动的监督方法相比,无监督自适应补丁优化方法已显示出前景,但MRI重建中仍存在以下挑战:1)在以前的k空间MRI重建任务中,很少考虑采集过程中存在噪声干扰的MRI。2)应解决变换域中的差异,以实现低欠采样MRI数据的高质量重建。3)鲁棒的补丁字典学习问题通常是非凸且NP难的,交替最小化方法通常计算成本很高。在本文中,我们提出了一种用于傅里叶域鲁棒去噪分解和自适应补丁MRI重建(DDAPR)的方法。DDAPR是一种用于在存在噪声和低欠采样数据的情况下进行MRI重建的两步优化方法。它包括低秩和稀疏去噪重建模型(LSDRM)和鲁棒字典学习重建模型(RDLRM)。第一步,我们针对不同域提出LSDRM。对于优化解决方案,使用近端梯度法通过奇异值分解和软阈值算法来优化LSDRM。第二步,我们提出RDLRM,它是一种有效的自适应补丁方法,通过引入低秩和稀疏惩罚自适应补丁字典并使用稀疏秩一矩阵来近似欠采样数据。然后,使用块坐标下降(BCD)方法来优化变量。BCD优化过程涉及有效的闭式解。大量数值实验表明,所提出的方法在基于压缩感知或深度学习的图像重建中比以前的方法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验