Suppr超能文献

一种具有增强收敛性和多样性平衡的大规模多目标粒子群优化器。

A Large-Scale Multiobjective Particle Swarm Optimizer With Enhanced Balance of Convergence and Diversity.

作者信息

Li Dongyang, Wang Lei, Li Li, Guo Weian, Wu Qidi, Lerch Alexander

出版信息

IEEE Trans Cybern. 2024 Mar;54(3):1596-1607. doi: 10.1109/TCYB.2022.3225341. Epub 2024 Feb 9.

Abstract

Large-scale multiobjective optimization problems (LSMOPs) continue to be challenging for existing multiobjective evolutionary algorithms (MOEAs). The main difficulties are that: 1) the diversity preservation in both the objective space and the decision space needs to be taken into account when solving LSMOPs and 2) the existing learning structures in current MOEAs usually make the learning operators only coincidentally serve convergence and diversity, leading to difficulties in balancing these two factors. Therefore, balancing convergence and diversity in current MOEAs is difficult. To address these issues, this article proposes a multiobjective particle swarm optimizer with enhanced balance of convergence and diversity (MPSO-EBCD). In MPSO-EBCD, a novel velocity update structure for multiobjective particle swarm optimization is put forward, dividing the convergence, and diversity preservation operations into independent components. Following the proposed update structure, a weighted convergence factor is introduced to serve the convergence strategy, whilst a diversity preservation strategy is built to uniformly distribute the particles in the searched space based on a proposed multidimensional local sparseness degree indicator. By this means, MPSO-EBCD is able to balance convergence and diversity with specific parameters in independent operators. Experimental results on LSMOP benchmarks and a voltage transformer optimization problem demonstrate the competitiveness of the proposed algorithm compared to several state-of-the-art MOEAs.

摘要

大规模多目标优化问题(LSMOPs)对现有的多目标进化算法(MOEAs)来说仍然具有挑战性。主要困难在于:1)在解决LSMOPs时,需要兼顾目标空间和决策空间中的多样性保持;2)当前MOEAs中现有的学习结构通常使学习算子只是偶然地服务于收敛和多样性,导致难以平衡这两个因素。因此,在当前的MOEAs中平衡收敛和多样性是困难的。为了解决这些问题,本文提出了一种具有增强收敛和多样性平衡的多目标粒子群优化器(MPSO-EBCD)。在MPSO-EBCD中,提出了一种用于多目标粒子群优化的新颖速度更新结构,将收敛和多样性保持操作划分为独立的组件。按照所提出的更新结构,引入加权收敛因子来服务于收敛策略,同时构建一种多样性保持策略,基于所提出的多维局部稀疏度指标将粒子均匀分布在搜索空间中。通过这种方式,MPSO-EBCD能够通过独立算子中的特定参数来平衡收敛和多样性。在LSMOP基准测试和一个电压互感器优化问题上的实验结果表明,与几种最先进的MOEAs相比,所提出的算法具有竞争力。

相似文献

5
Adaptive Gradient Multiobjective Particle Swarm Optimization.自适应梯度多目标粒子群优化算法。
IEEE Trans Cybern. 2018 Nov;48(11):3067-3079. doi: 10.1109/TCYB.2017.2756874. Epub 2017 Oct 9.
7
A Multiobjective Framework for Many-Objective Optimization.一种用于多目标优化的多目标框架。
IEEE Trans Cybern. 2022 Dec;52(12):13654-13668. doi: 10.1109/TCYB.2021.3082200. Epub 2022 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验