Suppr超能文献

多感觉互联想记忆网络的框架和忆阻器电路设计。

The Framework and Memristive Circuit Design for Multisensory Mutual Associative Memory Networks.

出版信息

IEEE Trans Cybern. 2023 Dec;53(12):7844-7857. doi: 10.1109/TCYB.2022.3227161. Epub 2023 Nov 29.

Abstract

In this work, we propose a multisensory mutual associative memory networks framework and memristive circuit to mimic the ability of the biological brain to make associations of information received simultaneously. The circuit inspired by neural mechanisms of associative memory cells mainly consists of three modules: 1) the storage neurons module, which encodes external multimodal information into the firing rate of spikes; 2) the synapse module, which uses the nonvolatility memristor to achieve weight adjustment and associative learning; and 3) the retrieval neuron module, which feeds the retrieval signal output from each sensory pathway to other sensory pathways, so that achieve mutual association and retrieval between multiple modalities. Different from other one-to-one or many-to-one unidirectional associative memory work, this circuit achieves bidirectional association from multiple modalities to multiple modalities. In addition, we simulate the acquisition, extinction, recovery, transmission, and consolidation properties of associative memory. The circuit is applied to cross-modal association of image and audio recognition results, and episodic memory is simulated, where multiple images in a scene are intramodal associated. With power and area analysis, the circuit is validated as hardware-friendly. Further research to extend this work into large-scale associative memory networks, combined with visual-auditory-tactile-gustatory sensory sensors, is promising for application in intelligent robotic platforms to facilitate the development of neuromorphic systems and brain-like intelligence.

摘要

在这项工作中,我们提出了一种多感觉互联想记忆网络框架和忆阻器电路,以模拟生物大脑同时接收信息并进行联想的能力。该电路的灵感来自于联想记忆细胞的神经机制,主要由三个模块组成:1)存储神经元模块,将外部多模态信息编码为尖峰的发放率;2)突触模块,使用非易失性忆阻器实现权重调整和联想学习;3)检索神经元模块,将来自每个感觉通路的检索信号反馈到其他感觉通路,从而实现多个模态之间的相互联想和检索。与其他一对一或多对一的单向联想记忆工作不同,该电路实现了多模态到多模态的双向联想。此外,我们模拟了联想记忆的获取、消退、恢复、传递和巩固特性。该电路应用于图像和音频识别结果的跨模态联想,并模拟情景记忆,其中场景中的多个图像进行模态内联想。通过功率和面积分析,验证了该电路具有硬件友好性。进一步的研究将这项工作扩展到大规模联想记忆网络,并结合视觉、听觉、触觉和味觉传感器,有望应用于智能机器人平台,以促进神经形态系统和类脑智能的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验