IEEE Trans Vis Comput Graph. 2024 Mar;30(3):1756-1771. doi: 10.1109/TVCG.2022.3226463. Epub 2024 Jan 30.
Graphical perception studies typically measure visualization encoding effectiveness using the error of an "average observer", leading to canonical rankings of encodings for numerical attributes: e.g., position area angle volume. Yet different people may vary in their ability to read different visualization types, leading to variance in this ranking across individuals not captured by population-level metrics using "average observer" models. One way we can bridge this gap is by recasting classic visual perception tasks as tools for assessing individual performance, in addition to overall visualization performance. In this article we replicate and extend Cleveland and McGill's graphical comparison experiment using Bayesian multilevel regression, using these models to explore individual differences in visualization skill from multiple perspectives. The results from experiments and modeling indicate that some people show patterns of accuracy that credibly deviate from the canonical rankings of visualization effectiveness. We discuss implications of these findings, such as a need for new ways to communicate visualization effectiveness to designers, how patterns in individuals' responses may show systematic biases and strategies in visualization judgment, and how recasting classic visual perception tasks as tools for assessing individual performance may offer new ways to quantify aspects of visualization literacy. Experiment data, source code, and analysis scripts are available at the following repository: https://osf.io/8ub7t/?view_only=9be4798797404a4397be3c6fc2a68cc0.
图形感知研究通常使用“平均观察者”的误差来衡量可视化编码的有效性,从而对数值属性的编码进行规范排名:例如,位置、面积、角度、体积。然而,不同的人在阅读不同类型的可视化方面的能力可能有所不同,这导致了个体之间在这种排名上的差异,而使用“平均观察者”模型的人群水平指标无法捕捉到这种差异。我们可以弥合这一差距的一种方法是,除了整体可视化性能外,还将经典视觉感知任务重新构建为评估个体表现的工具。在本文中,我们使用贝叶斯多层回归复制和扩展了 Cleveland 和 McGill 的图形比较实验,使用这些模型从多个角度探索可视化技能的个体差异。实验和建模的结果表明,有些人的准确性模式确实偏离了可视化效果的规范排名。我们讨论了这些发现的含义,例如需要向设计师传达可视化效果的新方法,个体反应中的模式如何显示可视化判断中的系统偏差和策略,以及如何将经典视觉感知任务重新构建为评估个体表现的工具可能为量化可视化素养的各个方面提供新方法。实验数据、源代码和分析脚本可在以下存储库中获得:https://osf.io/8ub7t/?view_only=9be4798797404a4397be3c6fc2a68cc0。