Suppr超能文献

高性能Transformer 跟踪。

High-Performance Transformer Tracking.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Jul;45(7):8507-8523. doi: 10.1109/TPAMI.2022.3232535. Epub 2023 Jun 5.

Abstract

Correlation has a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion method that considers the similarity between the template and the search region. However, the correlation operation is a local linear matching process, losing semantic information and easily falling into a local optimum, which may be the bottleneck in designing high-accuracy tracking algorithms. In this work, to determine whether a better feature fusion method exists than correlation, a novel attention-based feature fusion network, inspired by the transformer, is presented. This network effectively combines the template and search region features using attention mechanism. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. First, we present a transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression heads. Based on the TransT baseline, we also design a segmentation branch to generate the accurate mask. Finally, we propose a stronger version of TransT by extending it with a multi-template scheme and an IoU prediction head, named TransT-M. Experiments show that our TransT and TransT-M methods achieve promising results on seven popular benchmarks. Code and models are available at https://github.com/chenxin-dlut/TransT-M.

摘要

相关性在跟踪领域中起着至关重要的作用,尤其是在最近流行的基于孪生网络的跟踪器中。相关操作是一种简单的融合方法,考虑了模板和搜索区域之间的相似性。然而,相关操作是一种局部线性匹配过程,会丢失语义信息,并且容易陷入局部最优,这可能是设计高精度跟踪算法的瓶颈。在这项工作中,为了确定是否存在比相关性更好的特征融合方法,我们提出了一种受 Transformer 启发的基于注意力的特征融合网络。该网络使用注意力机制有效地结合了模板和搜索区域的特征。具体来说,所提出的方法包括基于自注意力的自我上下文增强模块和基于交叉注意力的交叉特征增强模块。首先,我们提出了一种基于类 Siamese 特征提取骨干、设计的基于注意力的融合机制以及分类和回归头的 Transformer 跟踪方法(命名为 TransT)。基于 TransT 基线,我们还设计了一个分割分支来生成准确的掩码。最后,我们通过扩展多模板方案和 IoU 预测头来增强 TransT,得到更强大的 TransT-M 方法。实验表明,我们的 TransT 和 TransT-M 方法在七个流行的基准上取得了有前途的结果。代码和模型可在 https://github.com/chenxin-dlut/TransT-M 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验