Suppr超能文献

一种用于表面缺陷检测的自适应图像分割网络。

An Adaptive Image Segmentation Network for Surface Defect Detection.

作者信息

Liu Taiheng, He Zhaoshui, Lin Zhijie, Cao Guang-Zhong, Su Wenqing, Xie Shengli

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):8510-8523. doi: 10.1109/TNNLS.2022.3230426. Epub 2024 Jun 3.

Abstract

Surface defect detection plays an essential role in industry, and it is challenging due to the following problems: 1) the similarity between defect and nondefect texture is very high, which eventually leads to recognition or classification errors and 2) the size of defects is tiny, which are much more difficult to be detected than larger ones. To address such problems, this article proposes an adaptive image segmentation network (AIS-Net) for pixelwise segmentation of surface defects. It consists of three main parts: multishuffle-block dilated convolution (MSDC), dual attention context guidance (DACG), and adaptive category prediction (ACP) modules, where MSDC is designed to merge the multiscale defect features for avoiding the loss of tiny defect feature caused by model depth, DACG is designed to capture more contextual information from the defect feature map for locating defect regions and obtaining clear segmentation boundaries, and ACP is used to make classification and regression for predicting defect categories. Experimental results show that the proposed AIS-Net is superior to the state-of-the-art approaches on four actual surface defect datasets (NEU-DET: 98.38% ± 0.03%, DAGM: 99.25% ± 0.02%, Magnetic-tile: 98.73% ± 0.13%, and MVTec: 99.72% ± 0.02%).

摘要

表面缺陷检测在工业中起着至关重要的作用,由于以下问题,这一过程具有挑战性:1)缺陷与非缺陷纹理之间的相似度非常高,最终导致识别或分类错误;2)缺陷尺寸微小,比大尺寸缺陷更难检测。为了解决这些问题,本文提出了一种用于表面缺陷逐像素分割的自适应图像分割网络(AIS-Net)。它由三个主要部分组成:多洗牌块扩张卷积(MSDC)、双注意力上下文引导(DACG)和自适应类别预测(ACP)模块,其中MSDC旨在融合多尺度缺陷特征,以避免模型深度导致的微小缺陷特征丢失,DACG旨在从缺陷特征图中捕获更多上下文信息,以定位缺陷区域并获得清晰的分割边界,ACP用于进行分类和回归以预测缺陷类别。实验结果表明,所提出的AIS-Net在四个实际表面缺陷数据集(NEU-DET:98.38%±0.03%,DAGM:99.25%±0.02%,Magnetic-tile:98.73%±0.13%,和MVTec:99.72%±0.02%)上优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验