IEEE Trans Med Imaging. 2023 May;42(5):1546-1562. doi: 10.1109/TMI.2022.3232572. Epub 2023 May 2.
Semi-supervised learning (SSL) methods show their powerful performance to deal with the issue of data shortage in the field of medical image segmentation. However, existing SSL methods still suffer from the problem of unreliable predictions on unannotated data due to the lack of manual annotations for them. In this paper, we propose an unreliability-diluted consistency training (UDiCT) mechanism to dilute the unreliability in SSL by assembling reliable annotated data into unreliable unannotated data. Specifically, we first propose an uncertainty-based data pairing module to pair annotated data with unannotated data based on a complementary uncertainty pairing rule, which avoids two hard samples being paired off. Secondly, we develop SwapMix, a mixed sample data augmentation method, to integrate annotated data into unannotated data for training our model in a low-unreliability manner. Finally, UDiCT is trained by minimizing a supervised loss and an unreliability-diluted consistency loss, which makes our model robust to diverse backgrounds. Extensive experiments on three chest CT datasets show the effectiveness of our method for semi-supervised CT lesion segmentation.
半监督学习(SSL)方法在处理医学图像分割领域的数据短缺问题方面表现出了强大的性能。然而,由于缺乏对这些未标记数据的人工注释,现有的 SSL 方法仍然存在对未标记数据预测不可靠的问题。在本文中,我们提出了一种不可靠性稀释一致性训练(UDiCT)机制,通过将可靠的注释数据组合到不可靠的未注释数据中来稀释 SSL 中的不可靠性。具体来说,我们首先提出了一种基于不确定性的数据配对模块,根据互补的不确定性配对规则将注释数据与未注释数据进行配对,从而避免两个硬样本被配对。其次,我们开发了 SwapMix,一种混合样本数据增强方法,将注释数据集成到未注释数据中,以便以低不可靠性方式训练我们的模型。最后,UDiCT 通过最小化监督损失和不可靠性稀释一致性损失来训练,这使得我们的模型对不同的背景具有鲁棒性。在三个胸部 CT 数据集上的广泛实验表明了我们的方法在半监督 CT 病变分割中的有效性。