Suppr超能文献

多因素逻辑回归模型预测与胆囊次全切除术相关的胆漏。

Multiple logistic regression model to predict bile leak associated with subtotal cholecystectomy.

机构信息

Department of General Surgery, Liverpool University Hospitals NHS Foundation Trust, Aintree Hospital, Lower Lane, Liverpool, L9 7AL, UK.

School of Medicine, University of Liverpool, Cedar House, Ashton St, Liverpool, L69 3GE, UK.

出版信息

Surg Endosc. 2023 Jul;37(7):5405-5413. doi: 10.1007/s00464-023-10049-2. Epub 2023 Apr 4.

Abstract

BACKGROUND

There are no prediction models for bile leakage associated with subtotal cholecystectomy (STC). Therefore, this study aimed to generate a multivariable prediction model for post-STC bile leakage and evaluate its overall performance.

METHODS

We analysed prospectively managed data of patients who underwent STC by a single consultant surgeon between 14 May 2013 and 21 December 2021. STC was schematised into four variants with five subvariants and classified broadly as closed-tract or open-tract STC. A contingency table was used to detect independent risk factors for bile leakage. A multiple logistic regression analysis was used to generate a model. Discrimination and calibration statistics were computed to assess the accuracy of the model.

RESULTS

A total of 81 patients underwent the STC procedure. Twenty-eight patients (35%) developed bile leakage. Of these, 18 patients (64%) required secondary surgical intervention. Multivariable logistic regression revealed two independent predictors of post-STC bile leak: open-tract STC (odds ratio [OR], 7.07; 95% confidence interval [CI], 2.191-25.89; P = 0.0170) and acute cholecystitis (OR, 5.449; 95% CI, 1.584-23.48; P = 0.0121). The area under the receiver-operating characteristic curve was 82.11% (95% CI, 72.87-91.34; P < 0.0001). Tjur's pseudo-R was 0.3189 and the Hosmer-Lemeshow goodness-of-fit statistic was 4.916 (P = 0.7665).

CONCLUSIONS

Open-tract STC and acute cholecystitis are the most reliable predictors of bile leakage associated with STC. Future prospective, multicentre studies with higher statistical power are needed to generate more specific and externally validated prediction models for post-STC bile leaks.

摘要

背景

目前尚无预测腹腔镜胆囊次全切除术(subtotal cholecystectomy,STC)后胆漏的模型。因此,本研究旨在建立一种腹腔镜胆囊次全切除术术后胆漏的多变量预测模型,并评估其整体性能。

方法

我们分析了 2013 年 5 月 14 日至 2021 年 12 月 21 日期间由同一位顾问外科医师行腹腔镜胆囊次全切除术的患者的前瞻性管理数据。腹腔镜胆囊次全切除术分为四种类型,每种类型又分为五种亚型,大致分为闭管型和开管型腹腔镜胆囊次全切除术。采用列联表检测胆漏的独立危险因素。采用多变量逻辑回归分析生成模型。计算判别和校准统计数据以评估模型的准确性。

结果

共 81 例患者接受了腹腔镜胆囊次全切除术。28 例(35%)发生胆漏。其中 18 例(64%)需要二次手术干预。多变量逻辑回归显示腹腔镜胆囊次全切除术术后胆漏的两个独立预测因素:开管型腹腔镜胆囊次全切除术(优势比[OR],7.07;95%置信区间[CI],2.191-25.89;P=0.0170)和急性胆囊炎(OR,5.449;95%CI,1.584-23.48;P=0.0121)。受试者工作特征曲线下面积为 82.11%(95%CI,72.87-91.34;P<0.0001)。Tjur 的伪 R 为 0.3189,Hosmer-Lemeshow 拟合优度统计量为 4.916(P=0.7665)。

结论

开管型腹腔镜胆囊次全切除术和急性胆囊炎是腹腔镜胆囊次全切除术后胆漏最可靠的预测因素。需要未来进行具有更高统计学效能的前瞻性、多中心研究,以生成更具体和外部验证的腹腔镜胆囊次全切除术术后胆漏预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab0b/10072799/ac18787a595d/464_2023_10049_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验