Olivares Rolando J, Rao Arvind, Morris Jeffrey S, Baladandayuthapani Veerabhadran
Department of Statistics, Texas A&M University.
Department of Bioinformatics and Computational Biology, UT M.D. Anderson Cancer Center.
IEEE Int Workshop Genomic Signal Process Stat. 2013 Nov;2013:5-8. doi: 10.1109/GENSIPS.2013.6735914.
We propose a method to integrate high-dimensional genomics datasets across multiple platforms with multiple imaging outcomes. This new statistical framework uses a hierarchical model to integrate biological relationships across platforms to identify genes that associate with multiple correlated imaging outcomes. Our two-stage hierarchical model uses the information shared across the platforms and thus increasing the predictive power to identify the relevant genes. We assess the performance of our proposed method through simulation and apply to data obtained from the Cancer Genome Atlas Glioblastoma Multiforme dataset. Our proposed method discovers multiple copy number and microRNA regulated genes that are related to patients' imaging outcomes in glioblastoma.
我们提出了一种方法,用于整合多个平台上具有多种成像结果的高维基因组数据集。这个新的统计框架使用层次模型来整合跨平台的生物学关系,以识别与多个相关成像结果相关的基因。我们的两阶段层次模型利用跨平台共享的信息,从而提高识别相关基因的预测能力。我们通过模拟评估了所提出方法的性能,并将其应用于从癌症基因组图谱多形性胶质母细胞瘤数据集中获得的数据。我们提出的方法发现了多个与多形性胶质母细胞瘤患者成像结果相关的拷贝数和microRNA调控基因。